arrow-forward Mordeduras, venenos y serpientes venenosas de Colombia

Capítulo 10 La dosis hace al veneno:
Revisión del potencial farmacológico de los venenos de serpiente

​​​​​​​Por: Carolina Zona, Teddy Angarita-Sierra​

Palabras Clave: Snake venoms, pharmacological activity, drug discovery, medicinal applications, Bothrops atrox, Crotalus durissus​

  • book-open 52 Paginas
  • time4 Hours of reading

DOI: 10.33610/047673yqihzl​

Desde el inicio de la historia humana, ha existido un estrecho vínculo entre las serpientes y las percepciones de la vida y la muerte. Por ello, los venenos de serpiente se han utilizado de muchas formas, como armas hasta remedios medievales. En la actualidad, así como en las antiguas civilizaciones, los venenos de serpiente han sido útiles para descubrir nuevas moléculas y crear medicamentos, como el primer antiveneno o el captopril®. Con el objetivo de brindar un panorama amplio del potencial farmacológico de los venenos de serpiente, realizamos búsquedas en línea durante abril a junio de 2021 siguiendo la metodología Primas y sus recomendaciones. Las propiedades terapéuticas atribuidas a los venenos se pueden agrupar en los siguientes usos farmacológicos: alteraciones del sistema cardiovascular y del sistema nervioso, tratamiento del cáncer, terapia antimicrobiana y el manejo de los trastornos de la coagulación. El potencial terapéutico de los venenos de serpientes colombianas es inmenso y pueden ayudar a generar nuevos tratamientos para múltiples patologías. El uso de tecnologías «ómicas» permitirá identificar más moléculas potenciales en los venenos de serpientes colombianas. Sin embargo, debemos seguir estudiando convencionalmente los componentes del veneno, mientras las tecnologías «ómicas» se puedan realizar de forma masiva y a un costo razonable para los investigadores colombianos.​

  1. Couchoud, P.-L. J.-G. Frazer et Le rameau d’or. Bull. l’Association Guillaume Budé1924, 4, 46–50.
  2. García, S.A.; Márquez, C.I. Cultivating positive health, learning, and community: The return of Mesoamerica’s Quetzalcoatl and the Venus star. Genealogy2021, 5, 53.
  3. Boquet, P. History of snake venom research. In Snake venoms; Springer, 1979; pp. 3–14.
  4. Creswell, R.T. Aristotle’s history of animals in ten books. 1902.
  5. Chevalier, J.; Gheerbrant, A. Dictionnaire des symboles. Paris: Robert Laffont. Jupiter1982, 349–350.
  6. Rosso, A.M. Toxicology and snakes in ptolemaic Egyptian dynasty: The suicide of Cleopatra. Toxicol. reports2021, 8, 676–695.
  7. T’serstevens, A. Le livre de Marco Polo ou de devisement du monde; Albin Michel, 1955;
  8. Wexler, P. History of toxicology and environmental health; Elsevier, 2014;
  9. Wexler, P. Toxicology in antiquity; Academic Press, 2018; ISBN 0128153407.
  10. Salazar, C. The treatment of war wounds in Graeco-Roman antiquity; Brill, 2018; ISBN 9004377484.
  11. Hodgson, B. In the arms of morpheus: The tragic history of laudanum, morphine, and patent medicines; Firefly Books Limited, 2001; ISBN 155297538X.
  12. Totelin, L.M.V. A. Mayor, The poison king: The life and legend of Mithradates Rome’s deadliest enemy [Book Review]. Isis2010, 101, 639.
  13. Bonaparte, L.-L. Ricerche chimiche sul veleno della vipera; 1843;
  14. Alper, C.A. Snakes and the complement system. In Snake Venoms; Springer, 1979; pp. 863–880.
  15. Hawgood, B.J. Doctor Albert Calmette 1863–1933: founder of antivenomous serotherapy and of antituberculous BCG vaccination. Toxicon1999, 37, 1241–1258.
  16. Calmette, A. Étude expérimentale du venin de Naja tripudians ou cobra capel et exposé d’une méthode de neutralisation de ce venin dans l’organisme. Ann Inst Pasteur1892, 6, 160–183.
  17. Calmette, A. Contribution à l’étude du venin des serpents. Immunisation des animaux et traitement de l’envenimation. Ann. Inst. Pasteur1894, 8, 275–291.
  18. Sewall, H. Experiments on the preventive inoculation of rattlesnake venom. J. Physiol.1887, 8, 203.
  19. Hawgood, B.J. Pioneers of anti-venomous serotherapy: Dr Vital Brazil (1865–1950). Toxicon1992, 30, 573–579.
  20. Brazil, V. Contribuiçãoaoestudo de venenoophidico. II. Veneno de algumasespéciesbrazileiras. Rev Méd São Paulo1901, 4, 296–300.
  21. Brazil, V. Contribuição ao estudo do veneno ophidico. Rev. Médica São Paulo1901, 4, 255–260.
  22. Ferreira, S.H. A bradykinin‐potentiating factor (BPF) present in the venom of Bothrops jararaca. Br. J. Pharmacol. Chemother.1965, 24, 163–169.
  23. Ferreira, S.H.; Bartelt, D.C.; Greene, L.J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry1970, 9, 2583–2593.
  24. Ondetti, M.A.; Williams, N.J.; Sabo, E.; Pluscec, J.; Weaver, E.R.; Kocy, O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry1971, 10, 4033–4039.
  25. Cushman, D.W.; Pluščec, J.; Williams, N.J.; Weaver, E.R.; Sabo, E.F.; Kocy, O.; Cheung, H.S.; Ondetti, M.A. Inhibition of angiotensin-converting enzyme by analogs of peptides from Bothrops jararaca venom. Experientia1973, 29, 1032–1035.
  26. Camargo, A.C.M.; Ianzer, D.; Guerreiro, J.R.; Serrano, S.M.T. Bradykinin-potentiating peptides: Beyond captopril. Toxicon2012, 59, 516–523, doi:10.1016/j.toxicon.2011.07.013.
  27. Lazarovici, P.; Marcinkiewicz, C.; Lelkes, P.I. From snake venom’s disintegrins and C-type lectins to anti-platelet drugs. Toxins (Basel).2019, 11, 303.
  28. Pereáñez Jiménez, J.A.; Vargas Muñoz, L.J. Toxinas de serpientes con alto potencial terapéutico y su uso en la biomedicina. Iatreia2009, 22, 382–391.
  29. El-Aziz, T.M.A.; Soares, A.G.; Stockand, J.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins (Basel).2019, 11, 1–25, doi:10.3390/toxins11100564.
  30. Li, L.; Huang, J.; Lin, Y. Snake venoms in cancer therapy: Past, present and future. Toxins (Basel).2018, 10, 1–8, doi:10.3390/toxins10090346.
  31. Jolkkonen, M.; Van Giersbergen, P.L.M.; Hellman, U.; Wernstedt, C.; Oras, A.; Satyapan, N.; Adem, A.; Karlsson, E. Muscarinic toxins from the black mamba Dendroaspis polylepis. Eur. J. Biochem.1995, 234, 579–585.
  32. Bordon, K. de C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; et al. From animal poisons and venoms to medicines: Achievements, challenges and perspectives in drug discovery. Front. Pharmacol.2020, 11, doi:10.3389/fphar.2020.01132.
  33. Chan, Y.S.; Cheung, R.C.F.; Xia, L.; Wong, J.H.; Ng, T.B.; Chan, W.Y. Snake venom toxins: toxicity and medicinal applications. Appl. Microbiol. Biotechnol.2016, 100, 6165–6181, doi:10.1007/s00253-016-7610-9.
  34. Herzig, V.; Cristofori-Armstrong, B.; Israel, M.R.; Nixon, S.A.; Vetter, I.; King, G.F. Animal toxins—Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol.2020, 181, 114096.
  35. Munawar, A.; Ali, S.A.; Akrem, A.; Betzel, C. Snake venom peptides: Tools of biodiscovery. Toxins (Basel).2018, 10, 474.
  36. Kini, R.M. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon2003, 42, 827–840.
  37. Tonello, F.; Rigoni, M. Cellular Mechanisms of action of snake phospholipase A2 toxins. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Springer Netherlands: Dordrecht, 2017; pp. 49–65 ISBN 978-94-007-6410-1.
  38. P Samy, R.; Gopalakrishnakone, P.; G Stiles, B.; S Girish, K.; N Swamy, S.; Hemshekhar, M.; S Tan, K.; G Rowan, E.; Sethi, G.; TK Chow, V. Snake venom phospholipases A2: a novel tool against bacterial diseases. Curr. Med. Chem.2012, 19, 6150–6162.
  39. Teixeira, S.C.; Borges, B.C.; Oliveira, V.Q.; Carregosa, L.S.; Bastos, L.A.; Santos, I.A.; Jardim, A.C.G.; Freire, F.M.; Martins, L.; Rodrigues, V.M. Insights into the antiviral activity of phospholipases A2 (PLA2s) from snake venoms. Int. J. Biol. Macromol.2020.
  40. Teixeira, S.C.; da Silva, M.S.; Gomes, A.A.S.; Moretti, N.S.; Lopes, D.S.; Ferro, E.A.V.; de Melo Rodrigues, V. Panacea within a Pandora’s box: the antiparasitic effects of phospholipases A2 (PLA2s) from snake venoms. Trends Parasitol.2021.
  41. Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins (Basel).2016, 8, 93.
  42. Gutiérrez, J.M.; Rucavado, A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie2000, 82, 841–850.
  43. Takeya, H.; Nishida, S.; Miyata, T.; Kawada, S.; Saisaka, Y.; Morita, T.; Iwanaga, S. Coagulation factor X activating enzyme from Russell’s viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J. Biol. Chem.1992, 267, 14109–14117.
  44. Karapetian, H. Reptilase time (RT). Methods Mol. Biol.2013, 992, 273–277, doi:10.1007/978-1-62703-339-8_20.
  45. Serrano, S.M.T. The long road of research on snake venom serine proteinases. Toxicon2013, 62, 19–26, doi:10.1016/j.toxicon.2012.09.003.
  46. Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics - Cardiovascular examples. Toxicon2012, 59, 497–506, doi:10.1016/j.toxicon.2011.03.017.
  47. Ullah, A. Structure–function studies and mechanism of action of snake venom l-amino acid oxidases. Front. Pharmacol.2020, 11, 110.
  48. Tan, K.K.; Bay, B.H.; Gopalakrishnakone, P. L-amino acid oxidase from snake venom and its anticancer potential. Toxicon2018, 144, 7–13.
  49. Calvete, J.J. The continuing saga of snake venom disintegrins. Toxicon2013, 62, 40–49.
  50. Clemetson, K.J. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon2010, 56, 1236–1246.
  51. Utkin, Y.N. Three-finger toxins, a deadly weapon of elapid venom - Milestones of discovery. Toxicon2013, 62, 50–55, doi:10.1016/j.toxicon.2012.09.007.
  52. Utkin, Y.N. Last decade update for three-finger toxins: Newly emerging structures and biological activities. World J. Biol. Chem.2019, 10, 17.
  53. Pu, X.C.; Wong, P.T.H.; Gopalakrishnakone, P. A novel analgesic toxin (hannalgesin) from the venom of king cobra (Ophiophagus hannah). Toxicon1995, 33, 1425–1431.
  54. Departamento Administrativo Nacional de Estadística (DANE). Estadísticas vitales: defunciones. Itrim 2022. Bogotá (Colombia): DANE; 2022. Disponible en: https://www.dane.gov.co/files/investigaciones/poblacion/bt_estadisticasvitales_defunciones_Itrim_2022pr.pdf55. 
  55. Uthman, O.A.; Hartley, L.; Rees, K.; Taylor, F.; Ebrahim, S.; Clarke, A. Multiple risk factor interventions for primary prevention of cardiovascular disease in low‐and middle‐income countries. Cochrane Database Syst. Rev.2015,8:CD011163. doi: 10.1002/14651858.CD011163.pub2.
  56. Social, M. de S. y P. Guía de práctica clínica para el manejo de la hipertensión arterial primaria (HTA); 2017.
  57. Xie, X.; Atkins, E.; Lv, J.; Bennett, A.; Neal, B.; Ninomiya, T.; Woodward, M.; MacMahon, S.; Turnbull, F.; Hillis, G.S. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet2016, 387, 435–443.
  58. Oparil, S.; Schmieder, R.E. New approaches in the treatment of hypertension. Circ. Res.2015, 116, 1074–1095.
  59. Péterfi, O.; Boda, F.; Szabó, Z.; Ferencz, E.; Bába, L. Hypotensive snake venom components—A mini-review. Molecules2019, 24, 2778.
  60. Strozzi, C.; Cocco, G.; Portaluppi, F.; Urso, L.; Alfiero, R.; Tasini, M.T.; Montanari, L.; Al Yassini, K.; Rizzo, A. Effects of captopril on the physical work capacity of normotensive patients with stable-effort angina pectoris. Cardiology1987, 74, 226–228.
  61. Frangieh, J.; Rima, M.; Fajloun, Z.; Henrion, D.; Sabatier, J.-M.; Legros, C.; Mattei, C. Snake venom components: Tools and cures to target cardiovascular diseases. Molecules2021, 26, 2223.
  62. Gouda, A.S.; Mégarbane, B. Snake venom‐derived bradykinin‐potentiating peptides: A promising therapy for COVID‐19? Drug Dev. Res.2021, 82, 38–48.
  63. Kini, R.M.; Koh, C.Y. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem. Pharmacol.2020, 181, 114105, doi:10.1016/j.bcp.2020.114105.
  64. Cómo funcionan los bloqueadores de los canales del calcio. Nursing (Lond).2003, 21, 42.
  65. Kobilka, B.K. Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol. Sci.2011, 32, 213–218.
  66. Hodgson, W.C.; Wickramaratna, J.C. In vitro neuromuscular activity of snake venoms. Clin. Exp. Pharmacol. Physiol.2002, 29, 807–814.
  67. Dutertre, S.; Nicke, A.; Tsetlin, V.I. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology2017, 127, 196–223, doi:10.1016/j.neuropharm.2017.06.011.
  68. Mohamed Abd El-Aziz, T.; Soares, A.G.; Stockand, J.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins (Basel).2019, 11, 564.
  69. Cook, D.; Simons, D.J. Neuromuscular blockade. StatPearls [Internet]2020.
  70. Koh, D.C.I.; Armugam, A.; Jeyaseelan, K. Snake venom components and their applications in biomedicine. Cell. Mol. Life Sci.2006, 63, 3030–3041, doi:10.1007/s00018-006-6315-0.
  71. Waheed, H.; Moin, S.F.; Choudhary, M.I. Snake venom: From deadly toxins to life-saving therapeutics. Curr. Med. Chem.2017, 24, 1874–1891, doi:10.2174/0929867324666170605091546.
  72. Camargo, L.C.; Campos, G.A.A.; Galante, P.; Biolchi, A.M.; Goncalves, J.C.; Lopes, K.S.; Mortari, M.R. Peptides isolated from animal venom as a platform for new therapeutics for the treatment of Alzheimer’s disease. Neuropeptides2018, 67, 79–86.
  73. de Oliveira Amaral, H.; Monge-Fuentes, V.; Mayer, A.B.; Campos, G.A.A.; Lopes, K.S.; Camargo, L.C.; Schwartz, M.F.; Galante, P.; Mortari, M.R. Animal venoms: therapeutic tools for tackling Parkinson’s disease. Drug Discov. Today2019, 24, 2202–2211.
  74. Akef, H.M. Snake venom: Kill and cure. Toxin Rev.2019, 38, 21–40.
  75. Bergonzoli G, Rodríguez A. Lineamientos técnicos y operativos para el análisis de la situación de las enfermedades crónicas no transmisibles en Colombia. Bogotá: Ministerio de Salud y Protección Social, CEDETES; 2013.
  76. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell2000, 100, 57–70.
  77. Onuigbo, W.I. A definition problem in cancer metastasis. Neoplasma1975, 22, 547—550.
  78. Mitrus, I.; Bryndza, E.; Sochanik, A.; Szala, S. Evolving models of tumor origin and progression. Tumor Biol.2012, 33, 911–917.
  79. Wild, C.; Weiderpass, E.; Stewart, B.W. World cancer report: cancer research for cancer prevention; IARC Press, 2020; ISBN 9283204476.
  80. Lopez-Camarillo, C.; Arechaga-Ocampo, E. Oncogenomics and cancer proteomics: Novel approaches in biomarkers discovery and therapeutic targets in cancer; BoD–Books on Demand, 2013; ISBN 9535110411.
  81. Forrester, H.B.; Li, J.; Hovan, D.; Ivashkevich, A.N.; Sprung, C.N. DNA repair genes: Alternative transcription and gene expression at the exon level in response to the DNA damaging agent, ionizing radiation. PLoS One2012, 7, e53358.
  82. Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol.2011, 29, 235–271.
  83. Loeb, L.A. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat. Rev. Cancer2011, 11, 450–457.
  84. Urra, F.A.; Araya-Maturana, R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. In Proceedings of the Seminars in Cancer Biology; Elsevier, 2020.
  85. Ma, R.; Kwok, H.F. New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted therapy. In Proceedings of the Seminars in Cancer Biology; Elsevier, 2020.
  86. Valent, P.; Bonnet, D.; De Maria, R.; Lapidot, T.; Copland, M.; Melo, J. V; Chomienne, C.; Ishikawa, F.; Schuringa, J.J.; Stassi, G. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer2012, 12, 767–775.
  87. Rodrigues, R.; Izidoro, L.F.; de Oliveira Jr., R.; Soares, A.; Rodrigues, V.; Sampaio, S. Snake venom phospholipases A2: A new class of antitumor agents. Protein Pept. Lett.2009, 16, 894–898, doi:10.2174/092986609788923266.
  88. Jain, D.; Kumar, S. Snake venom: A potent anticancer agent. Asian Pacific J. Cancer Prev.2012, 13, 4855–4860.
  89. Siddiqua, A.; Khattak, K.; Nwaz, S. Venom proteins: Prospects for anticancer therapy. Pak. J. Biochem. Mol. Biol2019, 52, 15–26.
  90. Pérez-Peinado, C.; Defaus, S.; Andreu, D. Hitchhiking with nature: Snake venom peptides to fight cancer and superbugs. Toxins (Basel).2020, 12, 255.
  91. Montoya-Gómez, A.; Montealegre-Sánchez, L.; García-Perdomo, H.A.; Jiménez-Charris, E. Cervical cancer and potential pharmacological treatment with snake venoms. Mol. Biol. Rep.2020, 47, 4709–4721, doi:10.1007/s11033-020-05503-6.
  92. Swenson, S.; Costa, F.; Minea, R.; Sherwin, R.P.; Ernst, W.; Fujii, G.; Yang, D.; Markland, F.S. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol. Cancer Ther.2004, 3, 499–511.
  93. Lucena, S.; Castro, R.; Lundin, C.; Hofstetter, A.; Alaniz, A.; Suntravat, M.; Sánchez, E.E. Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon2015, 93, 136–143, doi:10.1016/j.toxicon.2014.11.228.
  94. Machado, A.R.T.; Aissa, A.F.; Ribeiro, D.L.; Ferreira, R.S.; Sampaio, S.V.; Antunes, L.M.G. BjussuLAAO-II induces cytotoxicity and alters DNA methylation of cell-cycle genes in monocultured/co-cultured HepG2 cells. J. Venom. Anim. Toxins Incl. Trop. Dis.2019, 25, 1–9, doi:10.1590/1678-9199-jvatitd-1476-18.
  95. Moga, M.A.; Dimienescu, O.G.; Arvătescu, C.A.; Ifteni, P.; Pleş, L. Anticancer activity of toxins from bee and snake venom—an overview on ovarian cancer. Molecules2018, 23, 692.
  96. Khusro, A.; Aarti, C.; Barbabosa-Pliego, A.; Rivas-Cáceres, R.R.; Cipriano-Salazar, M. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microb. Pathog.2018, 125, 96–107.
  97. Schönthal, A.H.; Swenson, S.D.; Chen, T.C.; Markland, F.S. Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: A review. Biochem. Pharmacol.2020, 181, 114149, doi:10.1016/j.bcp.2020.114149.
  98. Teixeira, S.C.; Borges, B.C.; Oliveira, V.Q.; Carregosa, L.S.; Bastos, L.A.; Santos, I.A.; Jardim, A.C.G.; Freire, F.M.; Freitas, L.M.; Rodrigues, V.M.; et al. Insights into the antiviral activity of phospholipases A2 (PLA2s) from snake venoms. Int. J. Biol. Macromol.2020, 164, 616–625, doi:10.1016/j.ijbiomac.2020.07.178.
  99. Almeida, J.R.; Palacios, A.L. V; Patiño, R.S.P.; Mendes, B.; Teixeira, C.A.S.; Gomes, P.; da Silva, S.L. Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev. Res.2019, 80, 68–85.
  100. Paloschi, M. V; Pontes, A.S.; Soares, A.M.; Zuliani, J.P. An update on potential molecular mechanisms underlying the actions of snake venom L-amino acid oxidases (LAAOs). Curr. Med. Chem.2018, 25, 2520–2530.
  101. dos Santos Nunes, E.; De Souza, M.A.A.; de Melo Vaz, A.F.; de Sá Santana, G.M.; Gomes, F.S.; Coelho, L.C.B.B.; Paiva, P.M.G.; Da Silva, R.M.L.; Silva-Lucca, R.A.; Oliva, M.L.V. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.2011, 159, 57–63.
  102. Klein, R.C.; Fabres-Klein, M.H.; de Oliveira, L.L.; Feio, R.N.; Malouin, F.; Ribon, A. de O.B. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms. PLoS One2015, 10, DOI: 10.1371/journal.pone.0120514
  103. Rádis-Baptista, G.; Moreno, F.B.M.B.; de Lima Nogueira, L.; Martins, A.M.C.; de Oliveira Toyama, D.; Toyama, M.H.; Cavada, B.S.; de Azevedo, W.F.; Yamane, T. Crotacetin, a novel snake venom C-type lectin homolog of convulxin, exhibits an unpredictable antimicrobial activity. Cell Biochem. Biophys.2006, 44, 412–423.
  104. Chen, L.-W.; Kao, P.-H.; Fu, Y.-S.; Lin, S.-R.; Chang, L.-S. Membrane-damaging activity of Taiwan cobra cardiotoxin 3 is responsible for its bactericidal activity. Toxicon2011, 58, 46–53.
  105. Chen, L.-W.; Kao, P.-H.; Fu, Y.-S.; Hu, W.-P.; Chang, L.-S. Bactericidal effect of Naja nigricollis toxin γ is related to its membrane-damaging activity. Peptides2011, 32, 1755–1763.
  106. Wang, Y.; Hong, J.; Liu, X.; Yang, H.; Liu, R.; Wu, J.; Wang, A.; Lin, D.; Lai, R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One2008, 3, DOI: 10.1371/journal.pone.0003217.
  107. Wang, Y.; Zhang, Z.; Chen, L.; Guang, H.; Li, Z.; Yang, H.; Li, J.; You, D.; Yu, H.; Lai, R. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris. PLoS One2011, 6, DOI: 10.1371/journal.pone.0022120
  108. Zhao, H.; Gan, T.-X.; Liu, X.-D.; Jin, Y.; Lee, W.-H.; Shen, J.-H.; Zhang, Y. Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides2008, 29, 1685–1691.
  109. Zhou, H.; Dou, J.; Wang, J.; Chen, L.; Wang, H.; Zhou, W.; Li, Y.; Zhou, C. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity. Peptides2011, 32, 1131–1138.
  110. Zhao, F.; Lan, X.-Q.; Du, Y.; Chen, P.-Y.; Zhao, J.; Zhao, F.; Lee, W.-H.; Zhang, Y. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zool. Res.2018, 39, 87.
  111. Gan, Z.R.; Gould, R.J.; Jacobs, J.W.; Friedman, P.A.; Polokoff, M.A. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J. Biol. Chem.1988, 263, 19827–19832, doi:10.1016/s0021-9258(19)77710-2.
  112. Lynch, J.J.; Cook, J.J.; Sitko, G.R.; Holahan, M.A.; Ramjit, D.R.; Mellott, M.J.; Stranieri, M.T.; Stabilito, I.I.; Zhang, G.; Lynch, R.J. Nonpeptide glycoprotein IIb/IIIa inhibitors. 5. Antithrombotic effects of MK-0383. J. Pharmacol. Exp. Ther.1995, 272, 20–32.
  113. Barrett, J.S.; Murphy, G.; Peerlinck, K.; Lepeleire, I. De; Gould, R.J.; Panebianco, D.; Hand, E.; Deckmyn, H.; Vermylen, J.; Arnout, J. Pharmacokinetics and pharmacodynamics of MK‐383, a selective non‐peptide platelet glycoprotein‐IIb/IIIa receptor antagonist, in healthy men. Clin. Pharmacol. Ther.1994, 56, 377–388.
  114. Scarborough, R.M.; Rose, J.W.; Hsu, M.; Phillips, D.R.; Fried, V.A.; Campbell, A.M.; Nannizzi, L.; Charo, I.F. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem.1991, 266, 9359–9362.
  115. Scarborough, R.M.; Rose, J.W.; Naughton, M.A.; Phillips, D.R.; Nannizzi, L.; Arfsten, A.; Campbell, A.M.; Charo, I.F. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J. Biol. Chem.1993, 268, 1058–1065.
  116. Scarborough, R.M.; Naughton, M.A.; Teng, W.; Rose, J.W.; Phillips, D.R.; Nannizzi, L.; Arfsten, A.; Campbell, A.M.; Charo, I.F. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J. Biol. Chem.1993, 268, 1066–1073.
  117. Phillips, D.R.; Scarborough, R.M. Clinical pharmacology of eptifibatide. Am. J. Cardiol.1997, 80, 11B-20B.
  118. Momic, T.; Cohen, G.; Reich, R.; Arlinghaus, F.T.; Eble, J.A.; Marcinkiewicz, C.; Lazarovici, P. Vixapatin (VP12), a c-type lectin-protein from Vipera xantina palestinae venom: characterization as a novel anti-angiogenic compound. Toxins (Basel).2012, 4, 862–877.
  119. Momic, T.; Katzhendler, J.; Shai, E.; Noy, E.; Senderowitz, H.; Eble, J.A.; Marcinkiewicz, C.; Varon, D.; Lazarovici, P. Vipegitide: a folded peptidomimetic partial antagonist of α2β1 integrin with antiplatelet aggregation activity. Drug Des. Devel. Ther.2015, 9, 291.
  120. Novoa, E.; Seegers, W.H. Mechanisms of α-thrombin and β-thrombin-E formation: use of ecarin for isolation of meizothrombin 1. Thromb. Res.1980, 18, 657–668.
  121. Howie, P.W.; Prentice, C.R.M.; McNicol, G.P. A method of antithrombin estimation using plasma defibrinated with ancrod. Br. J. Haematol.1973, 25, 101–110.
  122. Kini, R.M.; Rao, V.S.; Joseph, J.S. Procoagulant proteins from snake venoms. Pathophysiol. Haemost. Thromb.2001, 31, 218–224.
  123. Rosing, J.; Tans, G. Meizothrombin, a major product of factor Xa-catalyzed prothrombin activation. Thromb. Haemost.1988, 60, 355–360.
  124. Rosing, J.; Tans, G. Structural and functional properties of snake venom prothrombin activators. Toxicon1992, 30, 1515–1527.
  125. Stevens, W.K.; Côté, H.C.F.; MacGillivray, R.T.A.; Nesheim, M.E. Calcium ion modulation of meizothrombin autolysis at Arg55-Asp56 and catalytic activity. J. Biol. Chem.1996, 271, 8062–8067.
  126. Triplett, D.A.; Stocker, K.F.; Unger, G.A.; Barna, L.K. The Textarin/Ecarin ratio: A confirmatory test for lupus anticoagulants. Thromb. Haemost.1993, 70, 925–931.
  127. Gosselin, R.C.; Douxfils, J. Ecarin based coagulation testing. Am. J. Hematol.2020, 95, 863–869.
  128. Tokunaga, F.; Nagasawa, K.; Tamura, S.; Miyata, T.; Iwanaga, S.; Kisiel, W. The factor V-activating enzyme (RVV-V) from Russell’s viper venom. Identification of isoproteins RVV-V alpha,-V beta, and-V gamma and their complete amino acid sequences. J. Biol. Chem.1988, 263, 17471–17481.
  129. Kisiel, W.; Canfield, W.M. [22] Snake venom proteases that activate blood-coagulation factor V. In Methods in enzymology; Elsevier, 1981; Vol. 80, pp. 275–285 ISBN 0076-6879.
  130. Stocker, K. Application of snake venom proteins in the diagnosis of hemostatic disorders. Med. use snake venom proteins1990, 213–252.
  131. Quick, A.J. Thromboplastin generation: effect of the bell-alton reagent and Russell viper venom on prothrombin consumption. Am. J. Clin. Pathol.1971, 55, 555–560.
  132. Pereañez, J.A.; Preciado, L.M.; Romero, l.e. Toxinology in Colombia: Contributions of programa de ofidismo/escorpionismo and other research groups. Vitae2019, 26, 120-134.
  133. Vargas, L.J.; Londoño, M.; Quintana, J.C.; Rua, C.; Segura, C.; Lomonte, B.; Núñez, V. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutumsnake venom. Comp. Biochem. Physiol. part B Biochem. Mol. Biol.2012, 161, 341–347.
  134. Quintana, J.C.; Chacón, A.M.; Vargas, L.; Segura, C.; Gutiérrez, J.M.; Alarcón, J.C. Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and crotoxin B. Acta Trop.2012, 124, 126–132, doi:10.1016/j.actatropica.2012.07.003.
  135. Vargas, L.J.; Quintana, J.C.; Pereañez, J.A.; Núñez, V.; Sanz, L.; Calvete, J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon2013, 64, 1–11, doi:10.1016/j.toxicon.2012.11.027.
  136. Vargas Muñoz, L.J.; Estrada-Gomez, S.; Núñez, V.; Sanz, L.; Calvete, J.J. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity. Int. J. Biol. Macromol.2014, 69, 200–207, doi:10.1016/j.ijbiomac.2014.05.039.
  137. Pereañez, J.A.; Preciado, L.M.; Fernández, J.; Camacho, E.; Lomonte, B.; Castro, F.; Cañas, C.A.; Galvis, C.; Castaño, S. Snake venomics, experimental toxic activities and clinical characteristics of human envenomation by Bothrocophias myersi (Serpentes: Viperidae) from Colombia. J. Proteomics2020, 220, 103758, doi:10.1016/j.jprot.2020.103758.
  138. Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol.2000, 1477, 146–156.
  139. Felicori, L.F.; Souza, C.T.; Velarde, D.T.; Magalhaes, A.; Almeida, A.P.; Figueiredo, S.; Richardson, M.; Diniz, C.R.; Sanchez, E.F. Kallikrein-like proteinase from bushmaster snake venom. Protein Expr. Purif.2003, 30, 32–42.
  140. Culma, M.F.; Pereanez, J.A.; Rangel, V.N.; Lomonte, B. Snake venomics of Bothrops punctatus, a semiarboreal pitviper species from Antioquia, Colombia. PeerJ2014, 2, doi:10.7717/peerj.246
  141. Mora-Obando, D.; Guerrero-Vargas, J.A.; Prieto-Sánchez, R.; Beltrán, J.; Rucavado, A.; Sasa, M.; Gutiérrez, J.M.; Ayerbe, S.; Lomonte, B. Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops aspervenom. J. Proteomics2014, 96, 159–172, doi:10.1016/j.jprot.2013.11.005.
  142. Bonilla-Porras, A.R.; Vargas, L.J.; Jimenez-Del-Rio, M.; Nuñez, V.; Velez-Pardo, C. Purification of nasulysin-1: A new toxin from Porthidium nasutum snake venom that specifically induces apoptosis in leukemia cell model through caspase-3 and apoptosis-inducing factor activation. Toxicon2016, 120, 166–174.
  143. Pereañez, J.A.; Gómez, I.D.; Patiño, A.C. Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A2 subunit: An in silico approach. J. Mol. Graph. Model.2012, 35, 36–42.
  144. Brigatte, P.; Faiad, O.J.; Ferreira Nocelli, R.C.; Landgraf, R.G.; Palma, M.S.; Cury, Y.; Curi, R.; Sampaio, S.C. Walker 256 tumor growth suppression by crotoxin involves formyl peptide receptors and lipoxin A4. Mediators Inflamm.2016, 2016 (1):2457532.
  145. Corin, R.E.; Viskatis, L.J.; Vidal, J.C.; Etcheverry, M.A. Cytotoxicity of crotoxin on murine erythroleukemia cells in vitro. Invest. New Drugs1993, 11, 11–15.
  146. Cura, J.E.; Blanzaco, D.P.; Brisson, C.; Cura, M.A.; Cabrol, R.; Larrateguy, L.; Mendez, C.; Sechi, J.C.; Silveira, J.S.; Theiller, E. Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA2, NSC-624244) in patients with advanced cancer. Clin. Cancer Res.2002, 8, 1033–1041.
  147. He, J.; Wu, X.; Wang, Y.; Han, R.; Qin, Z.; Xie, Y. Growth inhibitory effects and molecular mechanisms of crotoxin treatment in esophageal Eca-109 cells and transplanted tumors in nude mice. Acta Pharmacol. Sin.2013, 34, 295–300.
  148. de Andrade, C.M.; Rey, F.M.; Bianchini, F.J.; Sampaio, S. V; Torqueti, M.R. Crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, as a potential tool against thrombosis development. Int. J. Biol. Macromol.2019, 134, 653–659.
  149. Mello, C.P.; Lima, D.B.; Bandeira, I.C.J.; Tessarolo, L.D.; Sampaio, T.L.; Falcão, C.B.; Rádis-Baptista, G.; Martins, A.M.C. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atroxvenom gland. Toxicon2017, 130, 56–62.
  150. Martins, N.M.; Ferreira, D.A.S.; Rodrigues, M.A.C.; Cintra, A.C.O.; Santos, N.A.G.; Sampaio, S. V; Santos, A.C. Low-molecular-mass peptides from the venom of the Amazonian viper Bothrops atrox protect against brain mitochondrial swelling in rat: potential for neuroprotection. Toxicon2010, 56, 86–92.
  151. Gazerani, P. Venoms as an adjunctive therapy for Parkinson’s disease: Where are we now and where are we going? Futur. Sci. OA2021, 7, doi:10.2144/fsoa-2020-0119.
  152. Brenes, H.; Loría, G.D.; Lomonte, B. Potent antivirall activity against Flaviviridae of a group IIA phospholipase A2 isolated from the venom of Bothrops asper. Biologicals2020, 63, 48–52.
  153. Girón, M.E.; Guerrero, B.; Salazar, A.M.; Sánchez, E.E.; Álvarez, M.; Rodríguez-Acosta, A. Functional characterization of fibrinolytic metalloproteinases (colombienases) isolated from Bothrops colombiensis venom. Toxicon2013, 74, 116–126.
  154. Menaldo, D.L.; Costa, T.R.; Ribeiro, D.L.; Zambuzi, F.A.; Antunes, L.M.G.; Castro, F.A.; Frantz, F.G.; Sampaio, S. V Immunomodulatory actions and epigenetic alterations induced by proteases from Bothrops snake venoms in human immune cells. Toxicol. Vitr.2019, 61, doi: 10.1016/j.tiv.2019.06.020 .
  155. Romero-Vargas, F.F.; Rocha, T.; Cruz-Höfling, M.A.; Rodrigues-Simioni, L.; Ponce-Soto, L.A. Biochemical Characterization of a PLA2 Btae TX-I Isolated from Bothriopsis taeniata Snake Venom: A Pharmacological and Morphological Study. J Clin Toxicol2014, 4.:3 DOI: 10.4172/2161-0495.1000197
  156. Maluf, S.E.C.; Dal Mas, C.; Oliveira, E.B.; Melo, P.M.; Carmona, A.K.; Gazarini, M.L.; Hayashi, M.A.F. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides2016, 78, 11–16.
  157. Falcao, C.B.; Radis-Baptista, G. Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for applications in medicine and biotechnology. Peptides2020, 126, doi: 10.1016/j.peptides.2019.170234
  158. Petricevich, V.L.; Mendonça, R.Z. Inhibitory potential of Crotalus durissus terrificus venom on measles virus growth. Toxicon2003, 42, 143–153.
  159. Faure, G.; Bakouh, N.; Lourdel, S.; Odolczyk, N.; Premchandar, A.; Servel, N.; Hatton, A.; Ostrowski, M.K.; Xu, H.; Saul, F.A. Rattlesnake phospholipase A2 increases CFTR-chloride channel current and corrects F508CFTR dysfunction: impact in cystic fibrosis. J. Mol. Biol.2016, 428, 2898–2915.
  160. Pérez-Peinado, C.; Dias, S.A.; Domingues, M.M.; Benfield, A.H.; Freire, J.M.; Rádis-Baptista, G.; Gaspar, D.; Castanho, M.A.R.B.; Craik, D.J.; Henriques, S.T. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn (15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem.2018, 293, 1536–1549.
  161. Muller, V.D.; Soares, R.O.; dos Santos-Junior, N.N.; Trabuco, A.C.; Cintra, A.C.; Figueiredo, L.T.; Caliri, A.; Sampaio, S.V.; Aquino, V.H. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS One2014, 9, DOI: 10.1371/journal.pone.0112351
  162. Brigatte, P.; Konno, K.; Gutierrez, V.P.; Sampaio, S.C.; Zambelli, V.O.; Picolo, G.; Curi, R.; Cury, Y. Peripheral kappa and delta opioid receptors are involved in the antinociceptive effect of crotalphine in a rat model of cancer pain. Pharmacol. Biochem. Behav.2013, 109, 1–7.
  163. Teixeira, N.B.; Sant’Anna, M.B.; Giardini, A.C.; Araujo, L.P.; Fonseca, L.A.; Basso, A.S.; Cury, Y.; Picolo, G. Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain. Behav. Immun.2020, 84, 253–268.
  164. Pinheiro-Júnior, E.L.; Boldrini-França, J.; de Campos Araújo, L.M.P.; Santos-Filho, N.A.; Bendhack, L.M.; Cilli, E.M.; Arantes, E.C. LmrBPP9: A synthetic bradykinin-potentiating peptide from Lachesis muta rhombeata venom that inhibits the angiotensin-converting enzyme activity in vitro and reduces the blood pressure of hypertensive rats. Peptides2018, 102, 1–7.
  165. Jiménez–Charris, E.; Lopes, D.S.; Gimenes, S.N.C.; Teixeira, S.C.; Montealegre–Sánchez, L.; Solano–Redondo, L.; Fierro–Pérez, L.; Ávila, V. de M.R. Antitumor potential of Pllans–II, an acidic Asp49–PLA2 from Porthidium lansbergii lansbergii snake venom on human cervical carcinoma HeLa cells. Int. J. Biol. Macromol.2019, 122, 1053–1061.
  166. Montealegre-Sánchez, L.; Gimenes, S.N.C.; Lopes, D.S.; Teixeira, S.C.; Solano-Redondo, L.; de Melo Rodrigues, V.; Jiménez-Charris, E. Antitumoral potential of Lansbermin-I, a novel disintegrin from Porthidium lansbergii lansbergii venom on breast cancer cells. Curr. Top. Med. Chem.2019, 19, 2069–2078.
  167. Vargas Munoz, L.J.; Estrada-Gómez, S.; Nunez, V.; Sanz, L.; Calvete, J.J. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity. 2014, 69, 200-207. doi: 10.1016/j.ijbiomac.2014.05.039
  168. Rey-Suárez, P.; Núñez, V.; Gutiérrez, J.M.; Lomonte, B. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J. Proteomics2011, 75, 655–667, doi:10.1016/j.jprot.2011.09.003.
  169. Rey-Suárez, P.; Núñez, V.; Fernández, J.; Lomonte, B. Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. J. Proteomics2016, 136, 262–273, doi:10.1016/j.jprot.2016.02.006.
  170. Sanz, L.; Quesada-Bernat, S.; Ramos, T.; Casais-e-Silva, L.L.; Corrêa-Netto, C.; Silva-Haad, J.J.; Sasa, M.; Lomonte, B.; Calvete, J.J. New insights into the phylogeographic distribution of the 3FTx/PLA 2 venom dichotomy across genus Micrurus in South America. J. Proteomics2019, 200, 90–101, doi:10.1016/j.jprot.2019.03.014.
  171. Casais-e-Silva, L.L.; Teixeira, C.F.P.; Lebrun, I.; Lomonte, B.; Alape-Girón, A.; Gutiérrez, J.M. Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2. Toxicol. Lett.2016, 257, 60–71, doi:10.1016/j.toxlet.2016.06.005.
  172. Rey-Suárez, P.; Acosta, C.; Torres, U.; Saldarriaga-Córdoba, M.; Lomonte, B.; Núñez, V. MipLAAO, a new L-amino acid oxidase from the redtail coral snake Micrurus mipartitus. PeerJ2018, 2018, doi:10.7717/peerj.4924.
  173. Rey-Suárez, P.; Núñez, V.; Saldarriaga-Córdoba, M.; Lomonte, B. Primary structures and partial toxicological characterization of two phospholipases A2from Micrurus mipartitus and Micrurus dumerilii coral snake venoms. Biochimie2017, 137, 88–98, doi:10.1016/j.biochi.2017.03.008.
  174. Nascimento, L.R.S.; Silva, N.J.; Feitosa, D.T.; Prudente, A.L.C. Taxonomy of the Micrurus spixii species complex (Serpentes, Elapidae). Zootaxa2019, 4668, 370–392, doi:10.11646/zootaxa.4668.3.4.
  175. Terra, A.L.C.; Moreira-Dill, L.S.; Simões-Silva, R.; Monteiro, J.R.N.; Cavalcante, W.L.G.; Gallacci, M.; Barros, N.B.; Nicolete, R.; Teles, C.B.G.; Medeiros, P.S.M.; et al. Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Toxicon2015, 103, 1–11, doi:10.1016/j.toxicon.2015.06.011.
  176. Torres-Bonilla, K.A.; Schezaro-Ramos, R.; Floriano, R.S.; Rodrigues-Simioni, L.; Bernal-Bautista, M.H.; Alice da Cruz-Höfling, M. Biological activities of Leptodeira annulata (banded cat-eyed snake) venom on vertebrate neuromuscular preparations. Toxicon2016, 119, 345–351, doi:10.1016/j.toxicon.2016.07.004.
  177. Torres-Bonilla, K.A.; Floriano, R.S.; Schezaro-Ramos, R.; Rodrigues-Simioni, L.; da Cruz-Höfling, M.A. A survey on some biochemical and pharmacological activities of venom from two Colombian colubrid snakes, Erythrolamprus bizona (Double-banded coral snake mimic) and Pseudoboa neuwiedii (Neuwied’s false boa). Toxicon2017, 131, 29–36, doi:10.1016/J.TOXICON.2017.02.030.
  178. Torres-Bonilla, K.A.; Panunto, P.C.; Pereira, B.B.; Zambrano, D.F.; Herrán-Medina, J.; Bernal, M.H.; Hyslop, S. Toxinological characterization of venom from Leptodeira annulata (Banded cat-eyed snake; Dipsadidae, Imantodini). Biochimie2020, 174, 171–188, doi:10.1016/J.BIOCHI.2020.04.006.
  179. Heyborne, W.H.; Mackessy, S.P. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae). Biochimie2013, 95, 1923–1932, doi:10.1016/J.BIOCHI.2013.06.025.
  180. Peichoto, M.E.; Tavares, F.L.; DeKrey, G.; Mackessy, S.P. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: Identification of a protein with inhibitory activity against the parasite. Toxicon2011, 58, 28–34, doi:10.1016/j.toxicon.2011.04.018.
  181. Leite dos Santos, G.G.; Casais e Silva, L.L.; Pereira Soares, M.B.; Villarreal, C.F. Antinociceptive properties of Micrurus lemniscatus venom. Toxicon2012, 60, 1005–1012, doi:10.1016/j.toxicon.2012.07.003.
  182. Jiménez-Charris, E.; Montealegre-Sanchez, L.; Solano-Redondo, L.; Mora-Obando, D.; Camacho, E.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Proteomic and functional analyses of the venom of Porthidium lansbergii lansbergii (Lansberg’s hognose viper) from the Atlantic Department of Colombia. J. Proteomics2015, 114, 287–299, doi:10.1016/j.jprot.2014.11.016.​

Descargas


bg
Copyright: © 2024 por los autores. Publicación de acceso abierto bajo los términos y condiciones de la licencia Creative Commons Attribution ( CC BY-NC-ND 4.0 )

Compartir




Fichas de especies

¿Cómo reconócerlas?