arrow-forward Mordeduras, venenos y serpientes venenosas de Colombia

Capítulo 6
Tratamiento contra mordeduras de serpientes en Colombia: antivenenos como respuesta fundamental

​​​​​​​​​​​​​​​​​​​​​​​​Por: Ariadna Rodríguez-Vargas, Jaime Andrés Pereañez, María Carlina Castillo-Beltrán, Camila Figueredo-Salinas, Adrián Marcelo Franco-Vásquez, Teddy Angarita-Sierra

Palabras Clave: Tratamiento de mordeduras de serpientes, antivenenos, antisueros, anticuerpos.​

  • book-open 30 páginas
  • time2.5 Hora de lectura​

DOI: 10.33610/053642ffbzcy


Desde la época del Dr. Albert Calmette (década de 1890), los antivenenos derivados de animales hiperinmunizados, como ovejas o caballos, han sido el principal tratamiento para los envenenamientos por mordeduras de serpientes. Sin embargo, se han logrado avances significativos en las presentaciones farmacéuticas y los formatos moleculares de los antivenenos, lo que ha optimizado su desempeño cinético y farmacodinámico, ha prevenido o revertido los efectos clínicos y ha reducido los efectos adversos posteriores a su uso. Actualmente, la investigación se centra en la neutralización de componentes proteicos específicos mediante antivenenos. Además, se están explorando técnicas complementarias de inmunorreconocimiento para mejorar el desarrollo de antivenenos, haciéndolos más eficientes, efectivos y rentables. En este capítulo, se presenta una breve revisión histórica de la producción de antivenenos en el Instituto Nacional de Salud de Colombia, así como un detallado recuento del marco normativo y legal que regula y aborda la producción de antivenenos en Colombia. Asimismo, se exploran técnicas complementarias de inmunorreconocimiento dirigidas a mejorar el desarrollo de antivenenos para hacerlos más eficientes, efectivos y rentables. Finalmente, se destaca que la alta variabilidad de los venenos de serpiente impulsa la investigación científica orientada a mejorar la comprensión de los accidentes ofídicos y su tratamiento, así como a la implementación de mejores herramientas de manejo.​

  1. Dalefield, R. Antidotes. In Veterinary Toxicology for Australia and New Zealand; Elsevier, 2017; pp. 33–39 ISBN 978-0-12-420227-6.
  2. The Smithsonian Institution Antivenom Available online: https://www.si.edu/spotlight/antibody-initiative/antivenom (accessed on 1 May 2022).
  3. The University of Melbourne What Is Antivenom? Available online: https://biomedicalsciences.unimelb.edu.au/departments/department-of-biochemistry-and-pharmacology/engage/avru/discover/what-is-antivenom (accessed on 1 May 2022).
  4. Espino-Solis, G.P.; Riaño-Umbarila, L.; Becerril, B.; Possani, L.D. Antidotes against Venomous Animals: State of the Art and Prospectives. J Proteomics2009, 72, 183–199, doi:10.1016/j.jprot.2009.01.020.
  5. Waghmare, A.B.; Salvi, N.C.; Deopurkar, R.L.; Shenoy, P.A.; Sonpetkar, J.M. Evaluation of Health Status of Horses Immunized with Snake Venom and Montanide Adjuvants, IMS 3012 (Nanoparticle), ISA 206 and ISA 35 (Emulsion Based) during Polyvalent Snake Antivenom Production: Hematological and Biochemical Assessment. Toxicon2014, 82, 83–92, doi:10.1016/j.toxicon.2014.02.012.
  6. Bogado, F.; Núñez, S.; Mussart, N.B.; Leiva, L.; Acosta, O.C. Cambios Clínicos, Hemáticos y Coagulativos Consecuentes al Aumento de Anticuerpos En Equinos Productores de Suero Antiofídico. Revista Veterinaria2013, 24, 3–9, doi:10.30972/vet.2411141.
  7. Fan, H.W.; Vigilato, M.A.N.; Pompei, J.C.A.; Gutiérrez, J.M. Situation of Public Laboratories Manufacturing Antivenoms in Latin America. Revista Panamericana de Salud Publica/Pan American Journal of Public Health2019, 43, doi:10.26633/RPSP.2019.92.
  8. World Health Organization Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins; 2017.
  9. WHO Issues New Recommendation on Antivenom for Snakebites Available online: https://www.who.int/news/item/19-08-2018-who-issues-new-recommendation-on-antivenom-for-snakebites (consultado 1 May 2022).
  10. Ministerio de Salud y Protección, C. Decreto 386 de 2018; Ministerio de Salud y Protección social: República de Colombia, 2018; pp. 1–9.
  11. INVIMA Sistema de Tramites En Línea - Consultas Públicas disponible en línea: http://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp (consultado el 5 mayo 2022).
  12. Castillo-Beltrán, M.C.; Hurtado-Gómez, J.P.; Corredor-Espinel, V.; Ruiz-Gómez, F.J. A Polyvalent Coral Snake Antivenom with Broad Neutralization Capacity. PLoS Negl Trop Dis2018, 13, 1–14, doi:10.1371/journal.pntd.0007250.
  13. Gutiérrez, J.M.; Fan, H.W.; Silvera, C.L.M.; Angulo, Y. Stability, Distribution and Use of Antivenoms for Snakebite Envenomation in Latin America: Report of a Workshop. Toxicon2009, 53, 625–630, doi:10.1016/J.TOXICON.2009.01.020.
  14. Minsalud Guía Para El Manejo de Emergencias Toxicológicas; 2017; ISBN 978-958-5401-33-4.
  15. Oficina de laboratorios y control de calidad del INVIMA Guía de Liberación de Lotes de Vacunas, Hemoderivados y Sueros de Origen Animal (Suero Antiofídico); https://www.invima.gov.co/sites/default/files/el-instituto/laboratorio/Guia%20Liberacion%20de%20Lote%20LPB%202021-03-26.pdf (consultado el 1 May 2022)
  16. Jiménez-Charris, E.; Montealegre-Sánchez, L.; Solano-Redondo, L.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Divergent Functional Profiles of Acidic and Basic Phospholipases A2 in the Venom of the Snake Porthidium lansbergii lansbergii. Toxicon2016, 119, 289–298, doi:10.1016/j.toxicon.2016.07.006.17.
  17. Posada Arias, S.; Rey-Suárez, P.; Pereáñez J, A.; Acosta, C.; Rojas, M.; Delazari Dos Santos, L.; Ferreira, R.S.; Núñez, V. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A₂ from Colombian Bothrops asper Venom. Toxins 2017, 9, E342, doi:10.3390/toxins9110342.
  18. Fernandes, C.M.; Zamuner, S.R.; Zuliani, J.P.; Rucavado, A.; Gutiérrez, J.M.; Teixeira, C. de F.P. Inflammatory Effects of BaP1 a Metalloproteinase Isolated from Bothrops asper Snake Venom: Leukocyte Recruitment and Release of Cytokines. Toxicon2006, 47, 549–559, doi:10.1016/j.toxicon.2006.01.009.
  19. Clissa, P.B.; Laing, G.D.; Theakston, R.D.; Mota, I.; Taylor, M.J.; Moura-da-Silva, A.M. The Effect of Jararhagin, a Metalloproteinase from Bothrops jararaca Venom, on pro-Inflammatory Cytokines Released by Murine Peritoneal Adherent Cells. Toxicon2001, 39, 1567–1573, doi:10.1016/s0041-0101(01)00131-3.
  20. Vargas, L.J.; Londoño, M.; Quintana, J.C.; Rua, C.; Segura, C.; Lomonte, B.; Núñez, V. An Acidic Phospholipase A₂ with Antibacterial Activity from Porthidium nasutum Snake Venom. Comp Biochem Physiol B Biochem Mol Biol2012, 161, 341–347, doi:10.1016/j.cbpb.2011.12.010.
  21. Kini, R.M.; Evans, H.J. A Model to Explain the Pharmacological Effects of Snake Venom Phospholipases A2. Toxicon1989, 27, 613–635, doi:10.1016/0041-0101(89)90013-5.
  22. Sanjuán, J.; Vargas, J.; Ortiz, F.; Gonzalez-Herrera, L.; Watanabe-Minto, B.; Granja-Salcedo, Y. Determinación de la DL50 del Veneno de serpientes adultas de la especie Bothrops atrox en ratones albinos. Momentos de Ciencia2015, 9, 147–152.
  23. Segura, Á.; Herrera, M.; Villalta, M.; Vargas, M.; Gutiérrez, J.M.; León, G. Assessment of Snake Antivenom Purity by Comparing Physicochemical and Immunochemical Methods. Biologicals2013, 41, 93–97, doi:10.1016/j.biologicals.2012.11.001.
  24. Vázquez, H.; Olvera, F.; Alagón, A.; Sevcik, C. Production of Anti-Horse Antibodies Induced by IgG, F(Ab’)2 and Fab Applied Repeatedly to Rabbits. Effect on Antivenom Pharmacokinetics. Toxicon2013, 76, 362–369, doi:10.1016/j.toxicon.2013.09.004.
  25. Chippaux, J.P. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. Biol Aujourdhui2010, 204, 87–91, doi:10.1051/jbio/2009043.
  26. De Roodt; Rafael, A.; Eduardo, G.; Jorge, A.; Malbrán, I.N.P.B.A.N.L.I.S.C.G.; Vélez, A.; Aires, C.D.B.; Adolfo, C.O.S.; Roodt, R. De; Litwin, S.; et al. Comparación Entre Dos Métodos de Producción Para La Elaboración de Antivenenos Ofídicos. Acta Toxicol. Argent2010, 18, 10–20.
  27. Amazonas, D.R.; Portes-Junior, J.A.; Nishiyama-Jr, M.Y.; Nicolau, C.A.; Chalkidis, H.M.; Mourão, R.H.V.; Grazziotin, F.G.; Rokyta, D.R.; Gibbs, H.L.; Valente, R.H.; et al. Molecular Mechanisms Underlying Intraspecific Variation in Snake Venom. J Proteomics2018, 181, 60–72, doi:10.1016/j.jprot.2018.03.032.
  28. Pope, C.G. The Action of Proteolytic Enzymes on the Antitoxins and Proteins in Immune Sera: I. Brit. J. exp. Path1939, 20, 132–149.
  29. Pope, C.G. The Action of Proteolytic Enzymes on the Antitoxins and Proteins in Immune Sera: II. Br J Exp Pathol1939, 20, 201–212.
  30. Rojas, G.; Jiménez, J.; Gutiérrez, J. Caprylic Acid Fractionation of Hyperimmune Horse Plasma: Description of a Simple Procedure for Antivenom Production. Toxicon1994, 32, 351–363, doi:10.1016/0041-0101(94)90087-6.
  31. Simsiriwong, P.; Eursakun, S.; Ratanabanangkoon, K. A Study on the Use of Caprylic Acid and Ammonium Sulfate in Combination for the Fractionation of Equine Antivenom F(Ab’)2. Biologicals2012, 40, 338–344, doi:10.1016/j.biologicals.2012.05.002.
  32. Calvete, J.J.; Sanz, L.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M. Venoms, Venomics, Antivenomics. FEBS Lett2009, 583, 1736–1743, doi:10.1016/j.febslet.2009.03.029.
  33. Valenta, J. Venomous Snakes-Envenoming Therapy; Nova Science, 2010; ISBN 6312317269.
  34. Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol Sci2020, 41, 570–581.
  35. Casewell, N.R.; Wagstaff, S.C.; Wüster, W.; Cook, D.A.N.; Bolton, F.M.S.; King, S.I.; Pla, D.; Sanz, L.; Calvete, J.J.; Harrison, R.A. Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms. Proc Natl Acad Sci U S A2014, 111, 9205–9210, doi:10.1073/pnas.1405484111.
  36. Engmark, M.; Lomonte, B.; Gutiérrez, J.M.; Laustsen, A.H.; De Masi, F.; Andersen, M.R.; Lund, O. Cross-Recognition of a Pit Viper (Crotalinae) Polyspecific Antivenom Explored through High-Density Peptide Microarray Epitope Mapping. PLoS Negl Trop Dis2017, 11, e0005768, doi:10.1371/journal.pntd.0005768.
  37. Chippaux, J.P.; Goyffon, M. Venoms, Antivenoms and Immunotherapy. Toxicon1998, 36, 823–846, doi:10.1016/S0041-0101(97)00160-8.
  38. Mackessy, S. Handbook of Venoms and Toxins of Reptiles; Mackessy, S., Ed.; CRC Press, 2016; ISBN 9780429186394.
  39. Vázquez, H.; Chávez-Haro, A.; García-Ubbelohde, W.; Mancilla-Nava, R.; Paniagua-Solís, J.; Alagón, A.; Sevcik, C. Pharmacokinetics of a F(Ab′)2 Scorpion Antivenom in Healthy Human Volunteers. Toxicon2005, 46, 797–805, doi:10.1016/j.toxicon.2005.08.010.
  40. Andrew, S.M.; Titus, J.A. Purification of Immunoglobulin G. In Current Protocols in Cell Biology; 2001; Chapter 2: Unit 2.7. doi: 10.1002/0471142735.im0207s21
  41. Virtual Amrita lab Fragmentation of IgG Using Papain Available online: https://vlab.amrita.edu/?sub=3&brch=70&sim=1349&cnt=1 (Consultado el 3 May 2022).
  42. Ismail, M.; Abd-Elsalam, M.A. Pharmacokinetics of 125I-Labelled IgG, F(Ab’)2 and Fab Fractions of Scorpion and Snake Antivenins: Merits and Potential for Therapeutic Use. Toxicon1998, 36, 1523–1528, doi:10.1016/S0041-0101(98)00144-5.
  43. Stowers, R.S.; Callihan, J.; Bryers, J. Optimal Conditions for F(Ab) 2 Antibody Fragment Production from Mouse IgG2a. Undergraduate Research in Bioengineering2008, 16–20.
  44. Otero-Patiño, R.; Segura, Á.; Herrera, M.; Angulo, Y.; León, G.; Gutiérrez, J.M.; Barona, J.; Estrada, S.; Pereañez, A.; Quintana, J.C.; et al. Comparative Study of the Efficacy and Safety of Two Polyvalent, Caprylic Acid Fractionated [IgG and F(Ab’)2] Antivenoms, in Bothrops asper Bites In Colombia. Toxicon2012, 59, 344–355, doi:10.1016/j.toxicon.2011.11.017.
  45. Otero, R.; León, G.; Gutiérrez, J.M.; Rojas, G.; Toro, M.F.; Barona, J.; Rodríguez, V.; Díaz, A.; Núñez, V.; Quintana, J.C.; et al. Efficacy and Safety of Two Whole IgG Polyvalent Antivenoms, Refined by Caprylic Acid Fractionation with or without β-Propiolactone, in the Treatment of Bothrops asper Bites in Colombia. Trans R Soc Trop Med Hyg2006, 100, 1173–1182, doi:10.1016/j.trstmh.2006.01.006.
  46. Mendes, T.M.; Oliveira, D.; Figueiredo, L.F.M.; Machado-de-Avila, R.A.; Duarte, C.G.; Dias-Lopes, C.; Guimarães, G.; Felicori, L.; Minozzo, J.C.; Chávez-Olortegui, C. Generation and Characterization of a Recombinant Chimeric Protein (RCpLi) Consisting of B-Cell Epitopes of a Dermonecrotic Protein from Loxosceles intermedia Spider Venom. Vaccine2013, 31, 2749–2755, doi:10.1016/j.vaccine.2013.03.048.
  47. Gutiérrez, J.M.; León, G.; Burnouf, T. Antivenoms for the Treatment of Snakebite Envenomings: The Road Ahead. Biologicals2011, 39, 129–142, doi:10.1016/j.biologicals.2011.02.005.
  48. Rucavado, A.; Núñez, J.; Gutiérrez, J.M. Blister Formation and Skin Damage Induced by BaP1, a Haemorrhagic Metalloproteinase from the Venom of the Snake Bothrops Asper. Int J Exp Pathol1998, 79, 245–254.
  49. Queiroz, L.S.; Santo Neto, H.; Assakura, M.T.; Reichl, A.P.; Mandelbaum, F.R. Pathological Changes in Muscle Caused by Haemorrhagic and Proteolytic Factors from Bothrops jararaca Snake Venom. Toxicon1985, 23, 341–345, doi:10.1016/0041-0101(85)90158-8.
  50. Krifi, M.N.; El Ayeb, M.; Dellagi, K. The improvement and standardization of antivenom production in developing countries: comparing antivenom quality, therapeutical efficiency, and cost. Journal of Venomous Animals and Toxins1999, 5, 128–141, doi:10.1590/s0104-79301999000200002.
  51. Seifert, S.A.; Boyer, L. V. Recurrence Phenomena after Immunoglobulin Therapy for Snake Envenomations: Part 1. Pharmacokinetics and Pharmacodynamics of Immunoglobulin Antivenoms and Related Antibodies. Ann Emerg Med2001, 37, 189–195, doi:10.1067/mem.2001.113135.
  52. Núñez, V.; Cid, P.; Sanz, L.; De La Torre, P.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.; Calvete, J.J. Snake Venomics and Antivenomics of Bothrops atrox Venoms from Colombia and the Amazon Regions of Brazil, Perú and Ecuador Suggest the Occurrence of Geographic Variation of Venom Phenotype by a Trend towards Paedomorphism. J Proteomics2009, 73, 57–78, doi:10.1016/j.jprot.2009.07.013.
  53. Gutiérrez, J.M.; Lomonte, B.; León, G.; Alape-Girón, A.; Flores-Díaz, M.; Sanz, L.; Angulo, Y.; Calvete, J.J. Snake Venomics and Antivenomics: Proteomic Tools in the Design and Control of Antivenoms for the Treatment of Snakebite Envenoming. J Proteomics2009, 72, 165–182, doi:10.1016/j.jprot.2009.01.008.
  54. Gutiérrez, J.M.; León, G.; Lomonte, B. Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clin Pharmacokinet2003, 42, 721–741, doi:10.2165/00003088-200342080-00002.
  55. Casewell, N.R.; Cook, D.A.N.; Wagstaff, S.C.; Nasidi, A.; Durfa, N.; Wüster, W.; Harrison, R.A. Pre-Clinical Assays Predict Pan-African Echis Viper Efficacy for a Species-Specific Antivenom. PLoS Negl Trop Dis2010, 4, e851, doi:10.1371/journal.pntd.0000851.
  56. Fernandes, I.; Assumpção, G.G.; Silveira, C.R.F.; Faquim-Mauro, E.L.; Tanjoni, I.; Carmona, A.K.; Alves, M.F.M.; Takehara, H.A.; Rucavado, A.; Ramos, O.H.P.; et al. Immunochemical and Biological Characterization of Monoclonal Antibodies against BaP1, a Metalloproteinase from Bothropsasper Snake Venom. Toxicon2010, 56, 1059–1065, doi:10.1016/j.toxicon.2010.07.014.
  57. Maria, W.S.; Cambuy, M.O.; Costa, J.O.; Velarde, D.T.; Chávez-Olórtegui, C. Neutralizing Potency of Horse Antibothropic Antivenom. Correlation between in vivo and in vitro Methods. Toxicon1998, 36, 1433–1439, doi:10.1016/S0041-0101(98)00077-4.
  58. Kapp, R.W. Clarke’s Analysis of Drugs and Poisons, 3rd ed.; Moffat, A.C., Osselton, M.D., Widdop, B., Eds.; Pharmaceutical Press: London, UK, 2004; Vol. I, pp. 1–480; Vol. II, pp. 1–1176; ISBN 0-853-69473-7. Int. J. Toxicol.2006, 25, 81–82.
  59. Lomonte, B. Manual de Métodos Inmunológicos. Métodos Inmunológicos2007, 138.
  60. World Health Organization Guidelines for the Clinical Management of Snake Bites in the South-East Asia Region; New-Delhi, 2005.
  61. Instituto Nacional de Salud de Perú Sueros Antiponzoñosos disponible en línea: https://web.ins.gob.pe/es/productos-biologicos/productos (consultado el 1 mayo 2022).
  62. Scanes, C.G. Animals and Human Disease: Zoonosis, Vectors, Food-Borne Diseases, and Allergies. In Animals and Human Society; Academic Press, 2017; pp. 331–354 ISBN 9780128052471.
  63. Sarmiento, K.; Rodríguez, A.; Quevedo-Buitrago, W.; Torres, I.; Ríos, C.; Ruiz, L.; Salazar, J.; Hidalgo-Martínez, P.; Diez, H. Comparación de La Eficacia, La Seguridad y La Farmacocinética de Los Antivenenos Antiofídicos: Revisión de Literatura. Universitas Médica2019, 61, doi:10.11144/javeriana.umed61-1.anti.
  64. Isbister, G.K. Antivenom Efficacy or Effectiveness: The Australian Experience. Toxicology2010, 268, 148–154.
  65. Laustsen, A.H.; María Gutiérrez, J.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and Cons of Different Therapeutic Antibody Formats for Recombinant Antivenom Development. Toxicon2018, 146, doi:10.1016/j.toxicon.2018.03.004.
  66. Espino-Solis, G.P.; Riaño-Umbarila, L.; Becerril, B.; Possani, L.D. Antidotes against Venomous Animals: State of the Art and Prospectives. J Proteomics2009, 72, 183–199, doi:10.1016/j.jprot.2009.01.020.
  67. Laustsen, A.; Solà, M.; Jappe, E.C.; Oscoz, S.; Lauridsen, L.P.; Engmark, M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins 2016, 8, doi:10.3390/toxins8080226.
  68. de la Rosa, G.; Olvera, F.; Archundia, I.G.; Lomonte, B.; Alagón, A.; Corzo, G. Horse Immunization with Short-Chain Consensus α-Neurotoxin Generates Antibodies against Broad Spectrum of Elapid Venomous Species. Nat Commun2019, 10, 1–8, doi:10.1038/s41467-019-11639-2.
  69. Kadkhodazadeh, M.; Rajabibazl, M.; Motedayen, M.; Shahidi, S.; Veisi Malekshahi, Z.; Rahimpour, A.; Yarahmadi, M. Isolation of Polyclonal Single-Chain Fragment Variable (ScFv) Antibodies Against Venomous Snakes of Iran and Evaluation of Their Capability in Neutralizing the Venom. Iran J Pharm Res2020, 19, 288–296, doi:10.22037/ijpr.2019.14400.12358.
  70. Kazemi-Lomedasht, F.; Yamabhai, M.; Sabatier, J.-M.; Behdani, M.; Zareinejad, M.R.; Shahbazzadeh, D. Development of a Human ScFv Antibody Targeting the Lethal Iranian Cobra (Naja oxiana) Snake Venom. Toxicon2019, 171, 78–85, doi:10.1016/j.toxicon.2019.10.006.
  71. Romero-Giraldo, L.E.; Pulido, S.; Berrío, M.A.; Flórez, M.F.; Rey-Suárez, P.; Nuñez, V.; Pereañez, J.A. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins2022, 14, doi:10.3390/TOXINS14120825.
  72. Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite Envenoming. Nat Rev Dis Primers2017, 3, 17063, doi:10.1038/nrdp.2017.63.
  73. Resiere, D.; Arias, A.S.; Villalta, M.; Rucavado, A.; Brouste, Y.; Cabié, A.; Névière, R.; Césaire, R.; Kallel, H.; Mégarbane, B.; et al. Preclinical Evaluation of the Neutralizing Ability of a Monospecific Antivenom for the Treatment of Envenomings by Bothrops lanceolatus in Martinique. Toxicon2018, 148, 50–55, doi:10.1016/j.toxicon.2018.04.010.
  74. Theakston, R.D.G.; Reid, H.A. Development of Simple Standard Assay Procedures for the Characterization of Snake Venoms. Bull World Health Organ1983, 61, 949–956.
  75. WHO/SEARO: Guidelines for the clinical management of snake bites in the Southeast Asian region The Southeast Asian Journal of Tropical Medicine and Public Health; 1999.
  76. World Health Organization: Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. World Health Organization2010, 204, 87–91.
  77. World Health Organization: The Biological Potency Assay for Antivenom Preparations. Expert Committee on Biological Standardization1990.
  78. World Health Organization: Progress in the Characterization of Venoms and Standardization of Antivenoms. World Health Organization Offset Publication1981, 1–44.
  79. Meier, J.; Theakston, R.D.G. Approximate LD50 Determinations of Snake Venoms Using Eight to Ten Experimental Animals. Toxicon1986, 24, 395–401, doi:10.1016/0041-0101(86)90199-6.
  80. Ramakrishnan, M.A. Determination of 50% Endpoint Titer Using a Simple Formula. World J Virol2016, 5, 85, doi:10.5501/WJV.V5.I2.85.
  81. World Health Organization: Requirements for Biological Substances No. 21, WHO Technical Report Series No. 463, Annex 1. WHO Expert Committee on Biological Standardisation, 23rd Report; 1971.
  82. Sells, P.G. Animal Experimentation in Snake Venom Research and in vitro Alternatives. Toxicon2003, 42, 115–133, doi:10.1016/S0041-0101(03)00125-9.
  83. Engvall, E.; Perlmann, P. Enzyme-Linked Immunosorbent Assay (ELISA) Quantitative Assay of Immunoglobulin G. Immunochemistry1971, 8, 871–874, doi:10.1016/0019-2791(71)90454-X.
  84. Mahmood, T.; Yang, P.C. Western Blot: Technique, Theory, and Trouble Shooting. N Am J Med Sci2012, 4, 429–434, doi:10.4103/1947-2714.100998.
  85. Gavini, K.; Parameshwaran, K. Western Blot. StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542290/ (Consultado el 1 noviembre 2023).
  86. Lomonte, B.; Escolano, J.; Fernández, J.; Sanz, L.; Angulo, Y.; Gutiérrez, J.M.; Calvete, J.J. Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res2008, 7, 2445–2457, doi:10.1021/pr8000139.
  87. Theakston, R.D.G.; Jane Lloyd-Jones, M.; Reid, H.A. Micro-elisa for detecting and assaying snake venom and venom-antibody. The Lancet1977, 310, 639–641, doi:10.1016/S0140-6736(77)92502-8.
  88. Theakston, R.D.G. The Application of Immunoassay Techniques, Including Enzyme-Linked Immunosorbent Assay (ELISA), to Snake Venom Research. Toxicon1983, 21, 341–352, doi:10.1016/0041-0101(83)90090-9.
  89. Voller, A.; Bartlett, A.; Bidwell, D.E. Enzyme Immunoassays with Special Reference to ELISA Techniqies. J Clin Pathol1978, 31, 507–520, doi:10.1136/jcp.31.6.507.
  90. Theakston, R.D.G.; Reid, H.A. Enzyme-Linked Immunosorbent Assay (ELISA) in Assessing Antivenom Potency. Toxicon1979, 17, 511–515, doi:10.1016/0041-0101(79)90284-8.
  91. Burnette, W.N. “Western Blotting”: Electrophoretic Transfer of Proteins from Sodium Dodecyl Sulfate-Polyacrylamide Gels to Unmodified Nitrocellulose and Radiographic Detection with Antibody and Radioiodinated Protein A. Anal Biochem1981, 112, 195–203, doi:10.1016/0003-2697(81)90281-5.
  92. Sawyer, A. What Is Western Blotting? The Story of the Western Blot - BioTechniques Available online: https://www.biotechniques.com/biochemistry/south-north-east-and-west-ern-the-story-of-how-the-western-blot-came-into-being/ (Consulatodo el 4 May 2022).
  93. Isbister, G.K. Antivenom Efficacy or Effectiveness: The Australian Experience. Toxicology2010, 268, 148–154.
  94. Calvete, J.J.; Lomonte, B.; Sanz, L.; Pérez, A.; Rodríguez, Y.; Gutiérrez, J.M.; Pla, D. Venómica y antivenómica: herramientas proteómicas para hacer frente a la patología desatendida del envenenamiento ofídico. In Estrategias y Avances en el Estudio de Toxinas de Interés para la Biomedicina; Calvete, J.J., Ed.; Instituto de Biomedicina de Valencia: Valencia, España, 2015; pp. 79–97.
  95. Calvete, J.J.; Rodríguez, Y.; Quesada-Bernat, S.; Pla, D. Toxin-Resolved Antivenomics-Guided Assessment of the Immunorecognition Landscape of Antivenoms. Toxicon2018, 148, 107–122, doi:10.1016/j.toxicon.2018.04.015.
  96. Gutiérrez, J.M.; Solano, G.; Pla, D.; Herrera, M.; Segura, Á.; Vargas, M.; Villalta, M.; Sánchez, A.; Sanz, L.; Lomonte, B.; et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins2017, 9, 163, doi:10.3390/toxins9050163.
  97. Pla, D.; Gutiérrez, J.M.; Calvete, J.J. Second Generation Snake Antivenomics: Comparing Immunoaffinity and Immunodepletion Protocols. Toxicon2012, 60, 688–699, doi:10.1016/j.toxicon.2012.04.342.
  98. Ledsgaard, L.; Jenkins, T.P.; Davidsen, K.; Krause, K.E.; Martos-Esteban, A.; Engmark, M.; Andersen, M.R.; Lund, O.; Laustsen, A.H. Antibody Cross-Reactivity in Antivenom Research. Toxins 2018, 10, 393. https://doi.org/10.3390/toxins10100393.
  99. Calvete, J.J. Proteomic Tools against the Neglected Pathology of Snake Bite Envenoming. Expert Rev Proteomics2011, 8, 739–758.
  100. Calvete, J.J.; Lomonte, B.; Sanz, L.; Pérez, A.; Rodríguez, Y.; Gutiérrez, J.M.; Pla, D. Venómica y Antivenómica: Herramientas Proteómicas para Hacer Frente a la Patología Desatendida del Envenenamiento Ofídico. In Estrategias y Avances en el Estudio de Toxinas de Interés para la Biomedicina; Calvete, J.J., Ed.; Instituto de Biomedicina de Valencia: Valencia, España, 2015; pp. 79–97; ISBN 978-607-525-046-5.
  101. Gutiérrez, J.M.; Lomonte, B.; Sanz, L.; Calvete, J.; Pla, D. Immunological Profile of Antivenoms: Preclinical Analysis of the Efficacy of a Polyspecific Antivenom through Antivenomics and Neutralization Assays. J Proteomics2014, 340–350, doi:http://dx.doi.org/10.1016/j.jprot.2014.02.021.
  102. Pla, D.; Rodríguez, Y.; Calvete, J.J. Third Generation Antivenomics: Pushing the Limits of the in vitro Preclinical Assessment of Antivenoms. Toxins 2017, 9, doi:10.3390/toxins9050158.​

Descargas


bg
Copyright: © 2024 por los autores. Publicación de acceso abierto bajo los términos y condiciones de la licencia Creative Commons Attribution ( CC BY-NC-ND 4.0 )

Compartir




Fichas de especies

¿Cómo reconócerlas?