arrow-forward Mordeduras, venenos y serpientes venenosas de Colombia

Capítulo 5
Mezclas intrincadas: Buceando entre los venenos

​​​​​​​​​​​​​​​​​​​​​​Por: ​Ariadna Rodriguez-Vargas, Andres Pereañez, Camila Figueredo-Salinas, Juan Carlos Vega-Garzon, Adrian Marcelo Franco-Vasquez, Teddy Angarita-Sierra

Palabras Clave: Venenos de serpiente, toxinas, envenenamiento, actividad funcional, modelos 3D

  • book-open 78 Paginas
  • time5 Horas de lectura

DOI: 10.33610/017547oubvyy​​


 Los venenos de las serpientes han evolucionado con el propósito de dominar, inmovilizar y digerir a sus presas, además de servir como defensa frente a sus depredadores. Por lo tanto, las toxinas que los conforman están diseñadas específicamente para alterar o inhibir de manera precisa las funciones metabólicas y fisiológicas de sus presas o depredadores naturales. Por ejemplo, las metaloproteasas actúan principalmente alterando las uniones endoteliales, las fosfolipasas A2 dañan los tejidos del músculo esquelético y las toxinas de tres dedos afectan la transmisión de las señales eléctricas en las uniones sinápticas neuromusculares. Por ende, el envenenamiento ocasionado por las mordeduras de serpientes se caracteriza de acuerdo con los síntomas fisiopatológicos, hemocitotóxicos, miotóxicos y neurotóxicos que exhiben sus presas o personas durante un accidente ofídico. Actualmente, las hipótesis sobre los mecanismos de acción tóxica y las potencias de los componentes individuales del veneno siguen bajo debate, al igual que las hipótesis sobre los principales factores que determinan la amplia variabilidad en la composición de los venenos. Comprender los determinantes de la variabilidad y composición de los venenos de serpientes es fundamental, ya que estos elementos juegan un rol principal en el desenlace de los envenenamientos causados por estos reptiles. En este capítulo presentamos una revisión integral de la complejidad en la composición de los venenos de serpientes, detallando la naturaleza bioquímica y funcional de sus toxinas, y destacando su actividad durante el envenenamiento.​​​​

Sin título 1

  1. Kardong, K.; Lavin-Murcio, P. Venom Delivery of Snakes as High-Pressure and Low-Pressure Systems. JSTOR1993, 644–650.
  2. Broeckhoven, C.; Du Plessis, A. Has Snake Fang Evolution Lost Its Bite? New Insights from a Structural Mechanics Viewpoint. Biol Lett2017, 13, doi:10.1098/rsbl.2017.0293.
  3. Vidal, N. Colubroid Systematics: Evidence for an Early Appearance of the Venom Apparatus Followed by Extensive Evolutionary Tinkering. J Toxicol Toxin Rev2002, 21, 21–41.
  4. Kardong, K. V The Evolution of the Venom Apparatus in Snakes from Colubrids to Viperids & Elapids. Mem. Inst. Butantan1982, 4, 106–118.
  5. Weinstein, S.A.; Smith, T.L.; Kardong, K. V Reptil Venom Glands: Form, Function, and Future. In Handbook of venoms and toxins of reptiles; Mackessy, S.P., Ed.; CRC Press: Boca Raton, 2010; pp. 65–91 ISBN 978-0-8493-9165-1.
  6. Vonk, F.J.; Admiraal, J.F.; Jackson, K.; Reshef, R.; De Bakker, M.A.G.; Vanderschoot, K.; Van Den Berge, I.; Van Atten, M.; Burgerhout, E.; Beck, A.; et al. Evolutionary Origin and Development of Snake Fangs. Nature2008, 454, 630–633, doi:10.1038/nature07178.
  7. Deufel, A.; Cundall, D. Functional Plasticity of the Venom Delivery System in Snakes with a Focus on the Poststrike Prey Release Behavior. Zool Anz2006, 245, 249–267, doi: 10.1016/j.jcz.2006.07.002.
  8. Glaudas, X.; Kearney, T.C.; Alexander, G.J. To Hold or Not to Hold? The Effects of Prey Type and Size on the Predatory Strategy of a Venomous Snake. J Zool2017, 302, 211–218, doi:10.1111/jzo.12450.
  9. Mackessy, S. Handbook of Venoms and Toxins of Reptiles; Mackessy, S., Ed.; CRC Press, 2016; ISBN 9780429186394.
  10. Arbuckle, K. Evolutionary Context of Venom in Animals. In Evolution of Venomous Animals and Their Toxins; Gopalakrishnakone, P., Malhotra, A., Eds.; Springer: Dordrecht, 2017; pp. 3–31 ISBN 978-94-007-6458-3.
  11. Bock, W.J. The Definition and Recognition of Biological Adaptation. Am Zool1980, 20, 217–227.
  12. Wexler, P.; Fonger, G.C.; White, J.; Weinstein, S. Toxinology: Taxonomy, Interpretation, and Information Resources. Sci Technol Libr (New York, NY)2015, 34, 67–90, doi:10.1080/0194262X.2014.993788.
  13. Mebs, D. Venomous and Poisonous Animals: A Handbook for Biologists, Toxicologists and Toxinologists, Physicians and Pharmacists; Medpharm Scientific Publ., 2002; ISBN 9783804750234.
  14. Vetter, R.S.; Schmidt, J.O. Semantics of Toxinology. Toxicon2006, 48.
  15. Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol Sci2020, 41.
  16. Hiestand, P.C.; Hiestand, R.R.Dispholidus typus (Boomslang) Snake Venom: Purification and Properties of the Coagulant Principle. Toxicon1979, 17, doi:10.1016/0041-0101(79)90282-4.
  17. Lomonte, B.; Cerdas, L.; Solórzano, A.; Martinez, S. El Suero de Neonatos de Clelia clelia (Serpentes: Colubridae) Neutraliza La Acción Hemorrágica Del Veneno de Bothrops asper (Serpentes: Viperidae). Revista Biol. Trop.1989, 38, 325–326.
  18. Kazandjian, T.D.; Petras, D.; Robinson, S.D.; van Thiel, J.; Greene, H.W.; Arbuckle, K.; Barlow, A.; Carter, D.A.; Wouters, R.M.; Whiteley, G.; et al. Convergent Evolution of Pain-Inducing Defensive Venom Components in Spitting Cobras. Science2021, 371, 386–390, doi:10.1126/science. abb9303.
  19. Amazonas, D.R.; Portes-Junior, J.A.; Nishiyama-Jr, M.Y.; Nicolau, C.A.; Chalkidis, H.M.; Mourão, R.H.V.; Grazziotin, F.G.; Rokyta, D.R.; Gibbs, H.L.; Valente, R.H.; et al. Molecular Mechanisms Underlying Intraspecific Variation in Snake Venom. J Proteomics2018, 181, 60–72, doi:10.1016/j.jprot.2018.03.032.
  20. Chippaux, J.P.; Williams, V.; White, J. Snake Venom Variability: Methods of Study, Results and Interpretation. Toxicon1991, 29, 1279–1303.
  21. Chippaux, J.P.; Goyffon, M. Venoms, Antivenoms and Immunotherapy. Toxicon1998, 36, 823–846, doi:10.1016/S0041-0101(97)00160-8.
  22. Lomonte, B.; Rangel, J. Snake Venom Lys49 Myotoxins: From Phospholipases A2 to Non-Enzymatic Membrane Disruptors. Toxicon2012, 60, 520–530, doi: 10.1016/j.toxicon.2012.02.007.
  23. Vélez, S.M.; Salazar, M.; Acosta de Patiño, H.; Gómez, L.; Rodriguez, A.; Correa, D.; Saldaña, J.; Navarro, D.; Lomonte, B.; Otero-Patiño, R.; et al. Geographical Variability of the Venoms of Four Populations of Bothrops asper from Panama: Toxicological Analysis and Neutralization by a Polyvalent Antivenom. Toxicon2017, 132, 55–61, doi: 10.1016/j.toxicon.2017.04.002.
  24. Tasoulis, T.; Isbister, G.K. A Review and Database of Snake Venom Proteomes. Toxins (Basel)2017, doi:10.3390/toxins9090290.
  25. Aminoff, M.J.; So, Y.T. Effects of Toxins and Physical Agents on the Nervous System. In Neurology in Clinical Practice; Elsevier, 2012; pp. 1353–1376.
  26. Thornton, S.L. Snakes. In Encyclopedia of Toxicology: Third Edition; Academic Press, 2014; pp. 310–312 ISBN 9780123864543.
  27. Rolan, T.D. Neurotoxic Snakes of the Americas. Neurol Clin Pract2015, 5, 383–388, doi:10.1212/CPJ.0000000000000180.
  28. Castro, E.N.; Lomonte, B.; del Carmen Gutiérrez, M.; Alagón, A.; Gutiérrez, J.M. Intraspecies Variation in the Venom of the Rattlesnake Crotalus simus from Mexico: Different Expression of Crotoxin Results in Highly Variable Toxicity in the Venoms of Three Subspecies. J Proteomics2013, 87, 103–121, doi:10.1016/j.jprot.2013.05.024.
  29. Sunagar, K.; Undheim, E.A.B.; Scheib, H.; Gren, E.C.K.; Cochran, C.; Person, C.E.; Koludarov, I.; Kelln, W.; Hayes, W.K.; King, G.F.; et al. Intraspecific Venom Variation in the Medically Significant Southern Pacific Rattlesnake (Crotalus oeganus helleri): Biodiscovery, Clinical and Evolutionary Implications. J Proteomics2014, 99, 68–83, doi:10.1016/j.jprot.2014.01.013.
  30. Gutiérrez, J.M.; Rucavado, A. Snake Venom Metalloproteinases: Their Role in the Pathogenesis of Local Tissue Damage. Biochimie2000, 82, 841–850, doi:10.1016/s0300-9084(00)01163-9.
  31. Estêvão-Costa, M.I.; Diniz, C.R.; Magalhães, A.; Markland, F.S.; Sanchez, E.F. Action of Metalloproteinases Mutalysin I and II on Several Components of the Hemostatic and Fibrinolytic Systems. Thromb Res2000, 99, 363–376, doi:10.1016/S0049-3848(00)00259-0.
  32. Calvete, J.J.; Escolano, J.; Sanz, L. Snake Venomics of Bitis Species Reveals Large Intragenus Venom Toxin Composition Variation: Application to Taxonomy of Congeneric Taxa. J Proteome Res2007, 6, 2732–2745, doi:10.1021/pr0701714.
  33. Mackessy, S.P. Evolutionary Trends in Venom Composition in the Western Rattlesnakes (Crotalus viridis sensu lato): Toxicity vs. Tenderizers. Toxicon2010, 55, 1463–1474, doi: 10.1016/j.toxicon.2010.02.028.
  34. Salazar, A.M.; Guerrero, B.; Cantu, B.; Cantu, E.; Rodríguez-Acosta, A.; Pérez, J.C.; Galán, J.A.; Tao, A.;Sánchez, E.E. Venom Variation in Hemostasis of the Southern Pacific Rattlesnake (Crotalus oreganus helleri): Isolation of Hellerase. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology2009, 149, 307–316, doi: 10.1016/j.cbpc.2008.08.007.
  35. Lomonte, B.; Escolano, J.; Fernández, J.; Sanz, L.; Angulo, Y.; Gutiérrez, J.M.; Calvete, J.J.Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res2008, 7, 2445–2457, doi:10.1021/pr8000139.
  36. Boldrini-França, J.; Corrêa-Netto, C.; Silva, M.M.S.; Rodrigues, R.S.; De La Torre, P.; Pérez, A.; Soares, A.M.; Zingali, R.B.; Nogueira, R.A.; Rodrigues, V.M.; et al. Snake Venomics and Antivenomics of Crotalus durissus Subspecies from Brazil: Assessment of Geographic Variation and Its Implication on Snakebite Management. Proteomics2010, 73, 1758–1776, doi: 10.1016/j.jprot.2010.06.001.
  37. Fry, B.G.; Wickramaratna, J.C.; Hodgson, W.C.; Alewood, P.F.; Kini, R.M.; Ho, H.; Wüster, W. Electrospray Liquid Chromatography/Mass Spectrometry Fingerprinting of Acanthophis (Death Adder) Venoms: Taxonomic and Toxinological Implications. Rapid Communications in Mass Spectrometry2002, 16, 600–608, doi:10.1002/rcm.613.
  38. Daltry, J.C.; Wüster, W.; Thorpe, R.S. Diet and Snake Venom Evolution. Nature1996, 379, 537–542, doi:10.1038/379537a0.
  39. Sasa, M. Diet and Snake Venom Evolution: Can Local Selection Alone Explain Intraspecific Venom Variation? Toxicon1999, 37, 249–252, doi:10.1016/S0041-0101(98)00121-4.
  40. Hartmann, P.A.; Hartmann, M.T.; Martins, M. Ecology of a Snake Assemblage in the Atlantic Forest of Southeastern Brazil. Pap Avulsos Zool2009, 49, 343–360, doi:10.1590/s0031-10492009002700001.
  41. Daltry, J.C.; Ponnudurai, G.; Shin, C.K.; Tan, N.H.; Thorpe, R.S.; Wüster, W. Electrophoretic Profiles and Biological Activities: Intraspecific Variation in the Venom of the Malayan Pit Viper (Calloselasma rhodostoma). Toxicon1996, 34, 67–79, doi:10.1016/0041-0101(95)00122-0.
  42. Calvete, J.J.; Sanz, L.; Pérez, A.; Borges, A.; Vargas, A.M.; Lomonte, B.; Angulo, Y.; Gutiérrez, J.M.; Chalkidis, H.M.; Mourão, R.H.V.; et al. Snake Population Venomics and Antivenomics of Bothrops atrox: Paedomorphism along Its Transamazonian Dispersal and Implications of Geographic Venom Variability on Snakebite Management. J Proteomics2011, 74, 510–527, doi:10.1016/j.jprot.2011.01.003.
  43. Silva, F.M. da; Oliveira, L.S. de; Nascimento, L.R. de S.; Machado, F.A.; Prudente, A.L. da C. Sexual Dimorphism and Ontogenetic Changes of Amazonian Pit Vipers (Bothrops atrox). Zool Anz2017, 271, 15–24, doi:10.1016/j.jcz.2017.11.001.
  44. Gutiérrez, J.; Lomonte, B. Phospholipase A2 Myotoxins from Bothrops Snake Venoms. Toxicon1995, 33, 1405–1424.
  45. López-Lozano, J.L.; de Sousa, M.V.; Ricart, C.A.O.; Chávez-Olortegui, C.; Flores Sanchez, E.; Muniz, E.G.; Bührnheim, P.F.; Morhy, L. Ontogenetic Variation of Metalloproteinases and Plasma Coagulant Activity in Venoms of Wild Bothrops atrox Specimens from Amazonian Rain Forest. Toxicon2002, 40, 997–1006, doi:10.1016/S0041-0101(02)00096-X.
  46. da Silva Aguiar, W.; da Costa Galizio, N.; Sant’Anna, S.S.; Silveira, G.P.M.; de Souza Rodrigues, F.; Grego, K.F.; de Morais-Zani, K.; Tanaka-Azevedo, A.M. Ontogenetic Study of Bothrops jararacussu Venom Composition Reveals Distinct Profiles. Toxicon2020, 186, 67–77, doi: 10.1016/j.toxicon.2020.07.030.
  47. Antunes, T.C.; Yamashita, K.M.; Barbaro, K.C.; Saiki, M.; Santoro, M.L. Comparative Analysis of Newborn and Adult Bothrops jararaca Snake Venoms. Toxicon2010, 56, 1443–1458, doi: 10.1016/j.toxicon.2010.08.011.
  48. Menezes, M.C.; Furtado, M.F.; Travaglia-Cardoso, S.R.; Camargo, A.C.M.; Serrano, S.M.T. Sex-Based Individual Variation of Snake Venom Proteome among Eighteen Bothrops jararaca Siblings. Toxicon2006, 47, 304–312, doi:10.1016/j.toxicon.2005.11.007.
  49. Chippaux, J.P.; Boche, J.; Courtois, B. Electrophoretic Patterns of the Venoms from a Litter of Bitis gabonica Snakes. Toxicon1982, 20, 521–522, doi:10.1016/0041-0101(82)90019-8.
  50. Williams, V.; White, J.; Schwaner, T.D.; Sparrow, A. Variation in Venom Proteins from Isolated Populations of Tiger Snakes (Notechis ater niger, N. scutatus) in South Australia. Toxicon1988, 26, 1067–1075, doi:10.1016/0041-0101(88)90205-X.
  51. Fry, B.G.; Scheib, H.; van der Weerd, L.; Young, B.; McNaughtan, J.; Ryan Ramjan, S.F.; Vidal, N.; Poelmann, R.E.; Norman, J.A. Evolution of an Arsenal: Structural and Functional Diversification of the Venom System in the Advanced Snakes (Caenophidia). Molecular and Cellular Proteomics2008, 7, 215–246, doi:10.1074/mcp.M700094-MCP200.
  52. Gutiérrez, J.M.; Escalante, T.; Rucavado, A.; Herrera, C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins (Basel)2016, 8, 93, doi:10.3390/toxins8040093.
  53. Gutiérrez, J.M.; Rucavado, A.; Escalante, T.; Díaz, C. Hemorrhage Induced by Snake Venom Metalloproteinases: Biochemical and Biophysical Mechanisms Involved in Microvessel Damage. Toxicon2005, 45, 997–1011, doi: 10.1016/j.toxicon.2005.02.029.
  54. Takeda, S. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Toxins (Basel)2016, 8, doi:10.3390/TOXINS8050155.
  55. Gomis-Rüth, F.X. Structural Aspects of the Metzincin Clan of Metalloendopeptidases. Mol Biotechnol2003, 24, 157–202, doi:10.1385/MB:24:2:157.
  56. Bode, W.; Gomis-Rüth, F.X.; Stöckler, W. Astacins, Serralysins, Snake Venom and Matrix Metalloproteinases Exhibit Identical Zinc-Binding Environments (HEXXHXXGXXH and Met-Turn) and Topologies and Should Be Grouped into a Common Family, the “Metzincins.” FEBS Lett1993, 331, 134–140, doi:10.1016/0014-5793(93)80312-i.
  57. Fox, J.W.; Serrano, S.M.T. Insights into and Speculations about Snake Venom Metalloproteinase (SVMP) Synthesis, Folding and Disulfide Bond Formation and Their Contribution to Venom Complexity. FEBS J2008, 275, 3016–3030, doi:10.1111/j.1742-4658.2008.06466. x.
  58. Olaoba, O.T.; Karina Dos Santos, P.; Selistre-de-Araujo, H.S.; Ferreira de Souza, D.H. Snake Venom Metalloproteinases (SVMPs): A Structure-Function Update. Toxicon X2020, 7, 100052, doi: 10.1016/j.toxcx.2020.100052.
  59. Takeda, S.; Takeya, H.; Iwanaga, S. Snake Venom Metalloproteinases: Structure, Function and Relevance to the Mammalian ADAM/ADAMTS Family Proteins. Biochim Biophys Acta2012, 1824, 164–176, doi:10.1016/j.bbapap.2011.04.009.
  60. Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix Metalloproteinases: Fold and Function of Their Catalytic Domains. Biochim Biophys Acta2010, 1803, 20–28, doi: 10.1016/j.bbamcr.2009.04.003.
  61. Coronado, M.A.; de Moraes, F.R.; Ullah, A.; Masood, R.; Santana, V.S.; Mariutti, R.; Brognaro, H.; Georgieva, D.; Murakami, M.T.; Betzel, C.; et al. Three-Dimensional Structures and Mechanisms of Snake Venom Serine Proteinases, Metalloproteinases, and Phospholipase A2s. In Venom Genomics and Proteomics; Gopalakrishnakone, P., Calvete, J.J., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2016; pp. 239–267 ISBN 978-94-007-6416-3.
  62. Escalante, T.; Rucavado, A.; Pinto, A.F.M.; Terra, R.M.S.; Gutiérrez, J.M.; Fox, J.W. Wound Exudate as a Proteomic Window to Reveal Different Mechanisms of Tissue Damage by Snake Venom Toxins. J Proteome Res2009, 8, 5120–5131, doi:10.1021/pr900489m.
  63. Escalante, T.; Ortiz, N.; Rucavado, A.; Sanchez, E.F.; Richardson, M.; Fox, J.W.; Gutiérrez, J.M. Role of Collagens and Perlecan in Microvascular Stability: Exploring the Mechanism of Capillary Vessel Damage by Snake Venom Metalloproteinases. PLoS One2011, 6, e28017, doi: 10.1371/journal.pone.0028017.
  64. Moreira, L.; Borkow, G.; Ovadia, M.; Gutiérrez, J.M. Pathological Changes Induced by BaH1, a Hemorrhagic Proteinase Isolated from Bothrops asper (Terciopelo) Snake Venom, on Mouse Capillary Blood Vessels. Toxicon1994, 32, 976–987, doi:10.1016/0041-0101(94)90376-x.
  65. Ohsaka, A. Hemorrhagic, Necrotizing and Edema-Forming Effects of Snake Venoms. In Handbook of Experimental Pharmacology; Springer Verlag: Berlin, Germany, 1979; Vol. 52, Snake, pp. 480–546.
  66. Araki, S. Endothelial Cell Toxicity of Vascular Apoptosis-Inducing Proteins from Hemorrhagic Snake Venom. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2017; pp. 145–159 ISBN 978-94-007-6410-1.
  67. Díaz, C.; Valverde, L.; Brenes, O.; Rucavado, A.; Gutiérrez, J.M. Characterization of Events Associated with Apoptosis/Anoikis Induced by Snake Venom Metalloproteinase BaP1 on Human Endothelial Cells. J Cell Biochem2005, 94, 520–528, doi:10.1002/jcb.20322.
  68. Wan, S.-G.; Jin, Y.; Lee, W.-H.; Zhang, Y.A.Snake Venom Metalloproteinase That Inhibited Cell Proliferation and Induced Morphological Changes of ECV304 Cells. Toxicon2006, 47, 480–489, doi:10.1016/j.toxicon.2006.01.006.
  69. Wang, S.H.; Shen, X.C.; Yang, G.Z.; Wu, X.F.CDNA Cloning and Characterization of Agkistin, a New Metalloproteinase from Agkistrodon halys. Biochem Biophys Res Commun2003, 301, 298–303, doi:10.1016/s0006-291x(02)03001-2.
  70. You, W.-K.; Seo, H.-J.; Chung, K.-H.; Kim, D.-S. A Novel Metalloprotease from Gloydius halys Venom Induces Endothelial Cell Apoptosis through Its Protease and Disintegrin-like Domains. J Biochem2003, 134, 739–749, doi:10.1093/jb/mvg202.
  71. Rucavado, A.; Núñez, J.; Gutiérrez, J.M. Blister Formation and Skin Damage Induced by BaP1, a Haemorrhagic Metalloproteinase from the Venom of the Snake Bothrops asper. Int J Exp Pathol1998, 79, 245–254.
  72. Moura-da-Silva, A.M.; Marcinkiewicz, C.; Marcinkiewicz, M.; Niewiarowski, S. Selective Recognition of Alpha2beta1 Integrin by Jararhagin, a Metalloproteinase/Disintegrin from Bothrops jararaca Venom. Thromb Res2001, 102, 153–159, doi:10.1016/s0049-3848(01)00216-x.
  73. Baldo, C.; Jamora, C.; Yamanouye, N.; Zorn, T.M.; Moura-da-Silva, A.M. Mechanisms of Vascular Damage by Hemorrhagic Snake Venom Metalloproteinases: Tissue Distribution and in Situ Hydrolysis. PLoS Negl Trop Dis2010, 4, e727, doi: 10.1371/journal.pntd.0000727.
  74. Herrera, C.; Escalante, T.; Voisin, M.-B.; Rucavado, A.; Morazán, D.; Macêdo, J.K.A.; Calvete, J.J.; Sanz, L.; Nourshargh, S.; Gutiérrez, J.M.; et al. Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage. PLoS Negl Trop Dis2015, 9, e0003731, doi: 10.1371/journal.pntd.0003731.
  75. Baramova, E.N.; Shannon, J.D.; Bjarnason, J.B.; Gonias, S.L.; Fox, J.W. Interaction of Hemorrhagic Metalloproteinases with Human Alpha 2-Macroglobulin. Biochemistry1990, 29, 1069–1074, doi:10.1021/bi00456a032.
  76. Camacho, E.; Villalobos, E.; Sanz, L.; Pérez, A.; Escalante, T.; Lomonte, B.; Calvete, J.J.; Gutiérrez, J.M.; Rucavado, A. Understanding Structural and Functional Aspects of PII Snake Venom Metalloproteinases: Characterization of BlatH1, a Hemorrhagic Dimeric Enzyme from the Venom of Bothriechis Lateralis. Biochimie2014, 101, 145–155, doi: 10.1016/j.biochi.2014.01.008.
  77. Kamiguti, A.S.; Desmond, H.P.; Theakston, R.D.; Hay, C.R.; Zuzel, M. Ineffectiveness of the Inhibition of the Main Haemorrhagic Metalloproteinase from Bothrops jararaca Venom by Its Only Plasma Inhibitor, Alpha 2-Macroglobulin. Biochim Biophys Acta1994, 1200, 307–314, doi:10.1016/0304-4165(94)90172-4.
  78. Akao, P.K.; Tonoli, C.C.C.; Navarro, M.S.; Cintra, A.C.O.; Neto, J.R.; Arni, R.K.; Murakami, M.T. Structural Studies of BmooMPalpha-I, a Non-Hemorrhagic Metalloproteinase from Bothrops moojeni Venom. Toxicon2010, 55, 361–368, doi:10.1016/j.toxicon.2009.08.013.
  79. Bello, C.A.; Hermogenes, A.L.N.; Magalhaes, A.; Veiga, S.S.; Gremski, L.H.; Richardson, M.; Sanchez, E.F. Isolation and Biochemical Characterization of a Fibrinolytic Proteinase from Bothrops leucurus (White-Tailed Jararaca) Snake Venom. Biochimie2006, 88, 189–200, doi:10.1016/j.biochi.2005.07.008.
  80. Gutiérrez, J.M.; Romero, M.; Núñez, J.; Chaves, F.; Borkow, G.; Ovadia, M. Skeletal Muscle Necrosis and Regeneration after Injection of BaH1, a Hemorrhagic Metalloproteinase Isolated from the Venom of the Snake Bothrops asper (Terciopelo). Exp Mol Pathol1995, 62, 28–41, doi:10.1006/exmp.1995.1004.
  81. Patiño, A.C.; Pereañez, J.A.; Núñez, V.; Benjumea, D.M.; Fernandez, M.; Rucavado, A.; Sanz, L.; Calvete, J.J. Isolation and Biological Characterization of Batx-I, a Weak Hemorrhagic and Fibrinogenolytic PI Metalloproteinase from Colombian Bothrops atrox Venom. Toxicon2010, 56, 936–943, doi:10.1016/j.toxicon.2010.06.016.
  82. Wallnoefer, H.G.; Lingott, T.; Gutiérrez, J.M.; Merfort, I.; Liedl, K.R. Backbone Flexibility Controls the Activity and Specificity of a Protein-Protein Interface: Specificity in Snake Venom Metalloproteases. J Am Chem Soc2010, 132, 10330–10337, doi:10.1021/ja909908y.
  83. de Souza, R.A.; Díaz, N.; Nagem, R.A.P.; Ferreira, R.S.; Suárez, D. Unraveling the Distinctive Features of Hemorrhagic and Non-Hemorrhagic Snake Venom Metalloproteinases Using Molecular Simulations. J Comput Aided Mol Des2016, 30, 69–83, doi:10.1007/s10822-015-9889-5.
  84. Preciado, L.M.; Pereañez, J.A.; Singam, E.R.A.; Comer, J. Interactions between Triterpenes and a P-I Type Snake Venom Metalloproteinase: Molecular Simulations and Experiments. Toxins (Basel)2018, 10, 1–20, doi:10.3390/toxins10100397.
  85. Gutiérrez, J.M.; Escalante, T.; Hernández, R.; Gastaldello, S.; Saravia-Otten, P.; Rucavado, A. Why Is Skeletal Muscle Regeneration Impaired after Myonecrosis Induced by Viperid Snake Venoms? Toxins (Basel)2018, 10, E182, doi:10.3390/toxins10050182.
  86. Tidball, J.G. Regulation of Muscle Growth and Regeneration by the Immune System. Nat Rev Immunol2017, 17, 165–178, doi:10.1038/nri.2016.150.
  87. Queiroz, L.S.; Santo Neto, H.; Assakura, M.T.; Reichl, A.P.; Mandelbaum, F.R. Pathological Changes in Muscle Caused by Haemorrhagic and Proteolytic Factors from Bothrops jararaca Snake Venom. Toxicon1985, 23, 341–345, doi:10.1016/0041-0101(85)90158-8.
  88. Homma, M.; Tu, A.T. Morphology of Local Tissue Damage in Experimental Snake Envenomation. Br J Exp Pathol1971, 52, 538–542.
  89. Jiménez, N.; Escalante, T.; Gutiérrez, J.M.; Rucavado, A. Skin Pathology Induced by Snake Venom Metalloproteinase: Acute Damage, Revascularization, and Re-Epithelization in a Mouse Ear Model. J Invest Dermatol2008, 128, 2421–2428, doi:10.1038/jid.2008.118.
  90. Macêdo, J.K.A.; Joseph, J.K.; Menon, J.; Escalante, T.; Rucavado, A.; Gutiérrez, J.M.; Fox, J.W. Proteomic Analysis of Human Blister Fluids Following Envenomation by Three Snake Species in India: Differential Markers for Venom Mechanisms of Action. Toxins (Basel)2019, 11, E246, doi:10.3390/toxins11050246.
  91. Laing, G.D.; Clissa, P.B.; Theakston, R.D.G.; Moura-da-Silva, A.M.; Taylor, M.J. Inflammatory Pathogenesis of Snake Venom Metalloproteinase-Induced Skin Necrosis. Eur J Immunol2003, 33, 3458–3463, doi:10.1002/eji.200324475.
  92. Fernandes, C.M.; Zamuner, S.R.; Zuliani, J.P.; Rucavado, A.; Gutiérrez, J.M.; Teixeira, C. de F.P. Inflammatory Effects of BaP1 a Metalloproteinase Isolated from Bothrops asper Snake Venom: Leukocyte Recruitment and Release of Cytokines. Toxicon2006, 47, 549–559, doi: 10.1016/j.toxicon.2006.01.009.
  93. Teixeira, C. de F.P.; Fernandes, C.M.; Zuliani, J.P.; Zamuner, S.F. Inflammatory Effects of Snake Venom Metalloproteinases. Mem Inst Oswaldo Cruz2005, 100 Suppl, 181–184, doi:10.1590/s0074-02762005000900031.
  94. Clissa, P.B.; Laing, G.D.; Theakston, R.D.; Mota, I.; Taylor, M.J.; Moura-da-Silva, A.M. The Effect of Jararhagin, a Metalloproteinase from Bothrops jararaca Venom, on pro-Inflammatory Cytokines Released by Murine Peritoneal Adherent Cells. Toxicon2001, 39, 1567–1573, doi:10.1016/s0041-0101(01)00131-3.
  95. Schaloske, R.H.; Dennis, E.A. The Phospholipase A2 Superfamily and Its Group Numbering System. Biochim Biophys Acta2006, 1761, 1246–1259, doi: 10.1016/j.bbalip.2006.07.011.
  96. Filkin, S.Y.; Lipkin, A. V; Fedorov, A.N. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. Biochemistry (Mosc)2020, 85, S177–S195, doi:10.1134/S0006297920140096.
  97. Kini, R.M. Excitement Ahead: Structure, Function and Mechanism of Snake Venom Phospholipase A2 Enzymes. Toxicon2003, 42, 827–840, doi: 10.1016/j.toxicon.2003.11.002.
  98. Días, E.H.V.; Dos Santos Paschoal, T.; da Silva, A.P.; da Cunha Pereira, D.F.; de Sousa Simamoto, B.B.; Matias, M.S.; Santiago, F.M.; Rosa, J.C.; Soares, A.; Santos-Filho, N.A.; et al. BaltPLA2: A New Phospholipase A2 from Bothrops alternatus Snake Venom with Antiplatelet Aggregation Activity. Protein Pept Lett2018, 25, 943–952, doi:10.2174/0929866525666181004101622.
  99. Nunes, E.; Frihling, B.; Barros, E.; de Oliveira, C.; Verbisck, N.; Flores, T.; de Freitas Júnior, A.; Franco, O.; de Macedo, M.; Migliolo, L.; et al. Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom. Toxins (Basel)2020, 12, E606, doi:10.3390/toxins12090606.
  100. Jiménez-Charris, E.; Montealegre-Sánchez, L.; Solano-Redondo, L.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Divergent Functional Profiles of Acidic and Basic Phospholipases A2 in the Venom of the Snake Porthidium lansbergii lansbergii.Toxicon2016, 119, 289–298, doi: 10.1016/j.toxicon.2016.07.006.
  101. Posada Arias, S.; Rey-Suárez, P.; Pereáñez J, A.; Acosta, C.; Rojas, M.; Delazari Dos Santos, L.; Ferreira, R.S.; Núñez, V. Isolation and Functional Characterization of an Acidic Myotoxic Phospholipase A₂ from Colombian Bothrops asper Venom. Toxins (Basel)2017, 9, E342, doi:10.3390/toxins9110342.
  102. Vargas, L.J.; Londoño, M.; Quintana, J.C.; Rua, C.; Segura, C.; Lomonte, B.; Núñez, V.An Acidic Phospholipase A₂ with Antibacterial Activity from Porthidium nasutum Snake Venom. Comp Biochem Physiol B Biochem Mol Biol2012, 161, 341–347, doi: 10.1016/j.cbpb.2011.12.010.
  103. Kini, R.M.; Evans, H.J. A Model to Explain the Pharmacological Effects of Snake Venom Phospholipases A2. Toxicon1989, 27, 613–635, doi:10.1016/0041-0101(89)90013-5.
  104. Scott, D. Phospholipase A2: Structure and Catalytic Properties. In Venom phospholipase A2 enzymes: structure, function and mechanism; Kini, R., Ed.; John Wiley & Sons: Chichester, 1997; pp. 97–128.
  105. Berg, O.G.; Gelb, M.H.; Tsai, M.D.; Jain, M.K. Interfacial Enzymology: The Secreted Phospholipase A2-Paradigm. Chem Rev2001, 101, 2613–2654, doi:10.1021/cr990139w.
  106. Maraganore, J.M.; Merutka, G.; Cho, W.; Welches, W.; Kézdy, F.J.; Heinrikson, R.L. A New Class of Phospholipases A2 with Lysine in Place of Aspartate 49. Functional Consequences for Calcium and Substrate Binding. J Biol Chem1984, 259, 13839–13843.
  107. Gutiérrez, J.M.; León, G.; Lomonte, B. Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation. Clin Pharmacokinet2003, 42, 721–741, doi:10.2165/00003088-200342080-00002.
  108. Lambeau, G.; Schmid-Alliana, A.; Lazdunski, M.; Barhanin, J. Identification and Purification of a Very High Affinity Binding Protein for Toxic Phospholipases A2 in Skeletal Muscle. Journal of Biological Chemistry1990, 265, 9526–9532, doi:10.1016/s0021-9258(19)38881-7.
  109. Massimino, M.L.; Simonato, M.; Spolaore, B.; Franchin, C.; Arrigoni, G.; Marin, O.; Monturiol-Gross, L.; Fernández, J.; Lomonte, B.; Tonello, F. Cell Surface Nucleolin Interacts with and Internalizes Bothrops asper Lys49 Phospholipase A2 and Mediates Its Toxic Activity. Sci Rep2018, 8, 10619, doi:10.1038/s41598-018-28846-4.
  110. Fernandes, C.A.H.; Borges, R.J.; Lomonte, B.; Fontes, M.R.M. A Structure-Based Proposal for a Comprehensive Myotoxic Mechanism of Phospholipase A2-like Proteins from Viperid Snake Venoms. Biochim Biophys Acta Proteins Proteom2014, 1844, 2265–2276, doi: 10.1016/j.bbapap.2014.09.015.
  111. Gutiérrez, J.M.; Ownby, C.L. Skeletal Muscle Degeneration Induced by Venom Phospholipases A2: Insights into the Mechanisms of Local and Systemic Myotoxicity. Toxicon2003, 42, 915–931, doi: 10.1016/j.toxicon.2003.11.005.
  112. Montecucco, C.; Gutiérrez, J.M.; Lomonte, B. Cellular Pathology Induced by Snake Venom Phospholipase A2 Myotoxins and Neurotoxins: Common Aspects of Their Mechanisms of Action. Cell Mol Life Sci2008, 65, 2897–2912, doi:10.1007/s00018-008-8113-3.
  113. Otero-Patiño, R. Snake Bites in Colombia. In Clinical Toxinology: Clinical Toxinology; Gopalakrishnakone, P., Faiz, S.M.A., Gnanathasan, C.A., Habib, A.G., Fernando, R., Yang, C.-C., Eds.; Springer Netherlands: Dordrecht, 2013; pp. 1–42 ISBN 978-94-007-6288-6.
  114. Sarkar, S.; Sinha, R.; Chaudhury, A.R.; Maduwage, K.; Abeyagunawardena, A.; Bose, N.; Pradhan, S.; Bresolin, N.L.; Garcia, B.A.; McCulloch, M. Snake Bite Associated with Acute Kidney Injury. Pediatr Nephrol2020, 36, 3829–3840, doi:10.1007/s00467-020-04911-x.
  115. Sitprija, V. Animal Toxins and the Kidney. Nat Clin Pract Nephrol2008, 4, 616–627, doi:10.1038/ncpneph0941.
  116. Teixeira, C.F.P.; Landucci, E.C.T.; Antunes, E.; Chacur, M.; Cury, Y. Inflammatory Effects of Snake Venom Myotoxic Phospholipases A2. Toxicon2003, 42, 947–962, doi: 10.1016/j.toxicon.2003.11.006.
  117. Costa, S.K.P.; Camargo, E.A.; Antunes, E. Inflammatory Action of Secretory Phospholipases A2 from Snake Venoms. In Toxins and Drug Discovery; Cruz, L.J., Luo, S., Gopalakrishnakone, P., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2017; pp. 35–52 ISBN 978-94-007-6452-1.
  118. Pungerčar, J.; Križaj, I. Understanding the Molecular Mechanism Underlying the Presynaptic Toxicity of Secreted Phospholipases A2. Toxicon2007, 50, 871–892, doi: 10.1016/j.toxicon.2007.07.025.
  119. Montecucco, C.; Rossetto, O. How Do Presynaptic PLA2 Neurotoxins Block Nerve Terminals? Trends Biochem Sci2000, 25, 266–270, doi:10.1016/s0968-0004(00)01556-5.
  120. Tonello, F.; Rigoni, M. Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2017; pp. 49–65 ISBN 978-94-007-6410-1.
  121. Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. Identification and Properties of Very High Affinity Brain Membrane-Binding Sites for a Neurotoxic Phospholipase from the Taipan Venom. Journal of Biological Chemistry1989, 264, 11503–11510, doi:10.1016/s0021-9258(18)60492-2.
  122. Paoli, M.; Rigoni, M.; Koster, G.; Rossetto, O.; Montecucco, C.; Postle, A.D. Mass Spectrometry Analysis of the Phospholipase A 2 Activity of Snake Pre-Synaptic Neurotoxins in Cultured Neurons. J Neurochem2009, 111, 737–744, doi:10.1111/j.1471-4159.2009.06365. x.
  123. Rigoni, M.; Caccin, P.; Gschmeissner, S.; Koster, G.; Postle, A.D.; Rossetto, O.; Schiavo, G.; Montecucco, C. Equivalent Effects of Snake PLA2 Neurotoxins and Lysophospholipid-Fatty Acid Mixtures. Science2005, 310, 1678–1680, doi:10.1126/science.1120640.
  124. Nicotera, P.; Bellomo, G.; Orrenius, S. Calcium-Mediated Mechanisms in Chemically Induced Cell Death. Annu Rev Pharmacol Toxicol1992, 32, 449–470, doi:10.1146/annurev.pa.32.040192.002313.
  125. Montecucco, C.; Rossetto, O.; Caccin, P.; Rigoni, M.; Carli, L.; Morbiato, L.; Muraro, L.; Paoli, M. Different Mechanisms of Inhibition of Nerve Terminals by Botulinum and Snake Presynaptic Neurotoxins. Toxicon2009, 54, 561–564, doi: 10.1016/j.toxicon.2008.12.012.
  126. Kovacic, L.; Novinec, M.; Petan, T.; Krizaj, I. Structural Basis of the Significant Calmodulin-Induced Increase in the Enzymatic Activity of Secreted Phospholipases A2. Protein Eng Des Sel2010, 23, 479–487, doi:10.1093/protein/gzq019.
  127. Mattiazzi, M.; Sun, Y.; Wolinski, H.; Bavdek, A.; Petan, T.; Anderluh, G.; Kohlwein, S.D.; Drubin, D.G.; Križaj, I.; Petrovič, U. A Neurotoxic Phospholipase A2 Impairs Yeast Amphiphysin Activity and Reduces Endocytosis. PLoS One2012, 7, e40931, doi: 10.1371/journal.pone.0040931.
  128. Šribar, J.; Oberčkal, J.; Križaj, I. Understanding the Molecular Mechanism Underlying the Presynaptic Toxicity of Secreted Phospholipases A2: An Update. Toxicon2014, 89, 9–16, doi: 10.1016/j.toxicon.2014.06.019.
  129. Kordiš, D.; Križaj, I. Secreted Phospholipases A2 with β-Neurotoxic Activity. In Snake Venoms; Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R., Gopalakrishnakone, P., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2017; pp. 67–86 ISBN 978-94-007-6410-1.
  130. Pereañez, J.A.; Núñez, V.; Huancahuire-Vega, S.; Marangoni, S.; Ponce-Soto, L.A. Biochemical and Biological Characterization of a PLA2 from Crotoxin Complex of Crotalus durissus cumanensis. Toxicon2009, 53, 534–542, doi: 10.1016/j.toxicon.2009.01.021.
  131. Hendon, R.A.; Fraenkel-Conrat, H. Biological Roles of the Two Components of Crotoxin. Proc Natl Acad Sci USA1971, 68, 1560–1563, doi:10.1073/pnas.68.7.1560.
  132. Habermann, E.; Breithaupt, H. Mini-Review. The Crotoxin Complex-an Example of Biochemical and Pharmacological Protein Complementation. Toxicon1978, 16, 19–30, doi:10.1016/0041-0101(78)90056-9.
  133. Canziani, G.; Seki, C.; Vidal, J.C. The Mechanism of Inhibition of Phospholipase Activity of Crotoxin B by Crotoxin A. Toxicon1983, 21, 663–674, doi:10.1016/0041-0101(83)90272-6.
  134. Pereañez, J.A.; Gómez, I.D.; Patiño, A.C. Relationship between the Structure and the Enzymatic Activity of Crotoxin Complex and Its Phospholipase A2 Subunit: An in-Silico Approach. J Mol Graph Model2012, 35, 36–42, doi: 10.1016/j.jmgm.2012.01.004.
  135. Rey-Suárez, P.; Núñez, V.; Saldarriaga-Córdoba, M.; Lomonte, B. Primary Structures and Partial Toxicological Characterization of Two Phospholipases A2 from Micrurus mipartitus and Micrurus dumerilii Coral Snake Venoms. Biochimie2017, 137, 88–98, doi: 10.1016/j.biochi.2017.03.008.
  136. Kini, R.M. Structure-Function Relationships and Mechanism of Anticoagulant Phospholipase A2 Enzymes from Snake Venoms. Toxicon2005, 45, 1147–1161, doi: 10.1016/j.toxicon.2005.02.018.
  137. Verheij, H.M.; Boffa, M.C.; Rothen, C.; Bryckaert, M.C.; Verger, R.; de Haas, G.H. Correlation of Enzymatic Activity and Anticoagulant Properties of Phospholipase A2. Eur J Biochem1980, 112, 25–32, doi:10.1111/j.1432-1033. 1980.tb04982. x.
  138. Kini, R.M.; Evans, H.J. Structure-Function Relationships of Phospholipases. The Anticoagulant Region of Phospholipases A2. J Biol Chem1987, 262, 14402–14407.
  139. Stefansson, S.; Kini, R.M.; Evans, H.J. The Basic Phospholipase A2 from Naja nigricollis Venom Inhibits the Prothrombinase Complex by a Novel Nonenzymatic Mechanism. Biochemistry1990, 29, 7742–7746, doi:10.1021/bi00485a024.
  140. Faure, G.; Gowda, V.T.; Maroun, R.C. Characterization of a Human Coagulation Factor Xa-Binding Site on Viperidae Snake Venom Phospholipases A2 by Affinity Binding Studies and Molecular Bioinformatics. BMC Struct Biol2007, 7, 82, doi:10.1186/1472-6807-7-82.
  141. Faure, G.; Xu, H.; Saul, F. Anticoagulant Phospholipases A2 Which Bind to the Specific Soluble Receptor Coagulation Factor Xa. In Toxins and Hemostasis: From Bench to Bedside; Kini, R.M., Clemetson, K.J., Markland, F.S., McLane, M.A., Morita, T., Eds.; Springer Netherlands: Dordrecht, 2010; pp. 201–217 ISBN 978-90-481-9295-3.
  142. Saikia, D.; Mukherjee, A.K. Anticoagulant and Membrane Damaging Properties of Snake Venom Phospholipase A2 Enzymes. In Snake Venoms; Gopalakrishnakone, P., Inagaki, H., Mukherjee, A.K., Rahmy, T.R., Vogel, C.-W., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2015; pp. 1–14 ISBN 978-94-007-6648-8.
  143. Kini, R.M.; Evans, H.J. Effects of Phospholipase Enzymes on Platelet Aggregation. In Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism; John Wiley: Chichester, England, 1997; pp. 369–387.
  144. Ouyang, C.; Teng, C.M. The Action Mechanism of the Purified Platelet Aggregation Principle of Trimeresurus Mucrosquamatus Venom. Thromb Haemost1979, 41, 475–490.
  145. Landucci, E.C.; Condino-Neto, A.; Perez, A.C.; Hyslop, S.; Corrado, A.P.; Novello, J.C.; Marangoni, S.; Oliveira, B.; Antunes, E.; de Nucci, G. Crotoxin Induces Aggregation of Human Washed Platelets. Toxicon1994, 32, 217–226, doi:10.1016/0041-0101(94)90111-2.
  146. Ouyang, C.; Yeh, H.I.; Huang, T.F. A Potent Platelet Aggregation Inhibitor Purified from Agkistrodon Halys (Mamushi) Snake Venom. Toxicon1983, 21, 797–804, doi:10.1016/0041-0101(83)90068-5.
  147. Li, Y.S.; Liu, K.F.; Wang, Q.C.; Ran, Y.L.; Tu, G.C. A Platelet Function Inhibitor Purified from Vipera Russelli Siamensis (Smith) Snake Venom. Toxicon1985, 23, 895–903, doi:10.1016/0041-0101(85)90381-2.
  148. Ouyang, C.; Huang, T.F. Effect of the Purified Phospholipases A2 from Snake and Bee Venoms on Rabbit Platelet Function. Toxicon1984, 22, 705–718, doi:10.1016/0041-0101(84)90154-5.
  149. Péterfi, O.; Boda, F.; Szabó, Z.; Ferencz, E.; Bába, L. Hypotensive Snake Venom Components-A Mini-Review. Molecules2019, 24, 1–16, doi:10.3390/molecules24152778.
  150. Andrião-Escarso, S.H.; Soares, A.M.; Fontes, M.R.M.; Fuly, A.L.; Corrêa, F.M.A.; Rosa, J.C.; Greene, L.J.; Giglio, J.R. Structural and Functional Characterization of an Acidic Platelet Aggregation Inhibitor and Hypotensive Phospholipase A2 from Bothrops jararacussu Snake Venom. Biochem Pharmacol2002, 64, 723–732, doi:10.1016/s0006-2952(02)01210-8.
  151. Chaisakul, J.; Isbister, G.K.; Tare, M.; Parkington, H.C.; Hodgson, W.C. Hypotensive and Vascular Relaxant Effects of Phospholipase A2 Toxins from Papuan Taipan (Oxyuranus scutellatus) Venom. Eur J Pharmacol2014, 723, 227–233, doi: 10.1016/j.ejphar.2013.11.028.
  152. Silveira, L.B.; Marchi-Salvador, D.P.; Santos-Filho, N.A.; Silva, F.P.; Marcussi, S.; Fuly, A.L.; Nomizo, A.; da Silva, S.L.; Stábeli, R.G.; Arantes, E.C.; et al. Isolation and Expression of a Hypotensive and Anti-Platelet Acidic Phospholipase A2 from Bothrops moojeni Snake Venom. J Pharm Biomed Anal2013, 73, 35–43, doi: 10.1016/j.jpba.2012.04.008.
  153. Almeida, J.R.; Palacios, A.L. V; Patiño, R.S.P.; Mendes, B.; Teixeira, C.A.S.; Gomes, P.; da Silva, S.L. Harnessing Snake Venom Phospholipases A2 to Novel Approaches for Overcoming Antibiotic Resistance. Drug Dev Res2019, 80, 68–85, doi:10.1002/ddr.21456.
  154. Hiu, J.J.; Yap, M.K.K. Cytotoxicity of Snake Venom Enzymatic Toxins: Phospholipase A2 and l-Amino Acid Oxidase. Biochem Soc Trans2020, 48, 719–731, doi:10.1042/BST20200110.
  155. Asano, Y.; Yasukawa, K. Identification and Development of Amino Acid Oxidases. Curr Opin Chem Biol2019, 49, 76–83, doi: 10.1016/j.cbpa.2018.10.020.
  156. Hossain, G.S.; Li, J.; Shin, H.D.; Du, G.; Liu, L.; Chen, J. L-Amino Acid Oxidases from Microbial Sources: Types, Properties, Functions, and Applications. Appl Microbiol Biotechnol2014, 98, 1507–1515, doi:10.1007/s00253-013-5444-2.
  157. Paloschi, M. V.; Pontes, A.S.; Soares, A.M.; Zuliani, J.P. An Update on Potential Molecular Mechanisms Underlying the Actions of Snake Venom L-Amino Acid Oxidases (LAAOs). Curr Med Chem2018, 25, 2520–2530, doi:10.2174/0929867324666171109114125.
  158. Tan, N.H. L-Amino Acid Oxidases and Lactate Deshydrogenases. In Enzymes from snake venom; Bailey, G.S., Ed.; Alaken: Fort Collins, 1998; pp. 579–598.
  159. Ullah, A.Structure–Function Studies and Mechanism of Action of Snake Venom L-Amino Acid Oxidases. Front Pharmacol2020, 11, 110, doi:10.3389/fphar.2020.00110.
  160. Izidoro, L.F.M.; Sobrinho, J.C.; Mendes, M.M.; Costa, T.R.; Grabner, A.N.; Rodrigues, V.M.; Da Silva, S.L.; Zanchi, F.B.; Zuliani, J.P.; Fernandes, C.F.C.; et al. Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry. Biomed Res Int2014, 2014, doi:10.1155/2014/196754.
  161. Moustafa, I.M.; Foster, S.; Lyubimov, A.Y.; Vrielink, A. Crystal Structure of LAAO from Calloselasma rhodostoma with an L-Phenylalanine Substrate: Insights into Structure and Mechanism. J Mol Biol2006, 364, 991–1002, doi: 10.1016/j.jmb.2006.09.032.
  162. Guo, C.; Liu, S.; Yao, Y.; Zhang, Q.; Sun, M.Z. Past Decade Study of Snake Venom L-Amino Acid Oxidase. Toxicon2012, 60, 302–311.
  163. Liu, J.W.; Chai, M.Q.; Du, X.Y.; Song, J.G.; Zhou, Y.C. [Purification and characterization of L-amino acid oxidase from Agkistrodon halys pallas venom]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)2002, 34, 305–310.
  164. Torii, S.; Yamane, K.; Mashima, T.; Haga, N.; Yamamoto, K.; Fox, J.W.; Naito, M.; Tsuruo, T. Molecular Cloning and Functional Analysis of Apoxin I, a Snake Venom- Derived Apoptosis-Inducing Factor with L-Amino Acid Oxidase Activity. Biochemistry2000, 39, 3197–3205, doi:10.1021/bi992416z.
  165. Stábeli, R.G.; Marcussi, S.; Carlos, G.B.; Pietro, R.C.L.R.; Selistre-De-Araújo, H.S.; Giglio, J.R.; Oliveira, E.B.; Soares, A.M. Platelet Aggregation and Antibacterial Effects of an L-Amino Acid Oxidase Purified from Bothrops alternatus Snake Venom. Bioorg Med Chem2004, 12, 2881–2886, doi: 10.1016/j.bmc.2004.03.049.
  166. Rodrigues, R.S.; da Silva, J.F.; Boldrini França, J.; Fonseca, F.P.P.; Otaviano, A.R.; Henrique Silva, F.; Hamaguchi, A.; Magro, A.J.; Braz, A.S.K.; dos Santos, J.I.; et al. Structural and Functional Properties of Bp-LAAO, a new l-Amino Acid Oxidase Isolated from Bothrops pauloensis Snake Venom. Biochimie2009, 91, 490–501, doi: 10.1016/j.biochi.2008.12.004.
  167. Ciscotto, P.; Machado de Avila, R.A.; Coelho, E.A.F.; Oliveira, J.; Diniz, C.G.; Farías, L.M.; de Carvalho, M.A.R.; Maria, W.S.; Sanchez, E.F.; Borges, A.; etal. Antigenic, Microbicidal and Antiparasitic Properties of an l-Amino Acid Oxidase Isolated from Bothrops jararaca Snake Venom. Toxicon2009, 53, 330–341, doi: 10.1016/j.toxicon.2008.12.004.
  168. Vargas, L.J.; Quintana, J.C.; Pereañez, J.A.; Núñez, V.; Sanz, L.; Calvete, J. Cloning and Characterization of an Antibacterial L-Amino Acid Oxidase from Crotalus Durissus cumanensis Venom. Toxicon2013, 64, 1–11, doi: 10.1016/j.toxicon.2012.11.027.
  169. Vargas Muñoz, L.J.; Estrada-Gomez, S.; Núñez, V.; Sanz, L.; Calvete, J.J. Characterization and CDNA Sequence of Bothriechis schlegelii L-Amino Acid Oxidase with Antibacterial Activity. Int J Biol Macromol2014, 69, 200–207, doi: 10.1016/j.ijbiomac.2014.05.039.
  170. Bedoya-Medina, J.; Mendivil-Perez, M.; Rey-Suarez, P.; Jimenez-Del-Rio, M.; Núñez, V.; Velez-Pardo, C. L-Amino Acid Oxidase Isolated from Micrurus mipartitus Snake Venom (MipLAAO)Specifically Induces Apoptosis in Acute Lymphoblastic Leukemia Cells Mostly via Oxidative Stress-Dependent Signaling Mechanism. Int J Biol Macromol2019, 134, 1052–1062, doi: 10.1016/j.ijbiomac.2019.05.174.
  171. Izidoro, L.F.M.; Ribeiro, M.C.; Souza, G.R.L.; Sant’Ana, C.D.; Hamaguchi, A.; Homsi-Brandeburgo, M.I.; Goulart, L.R.; Beleboni, R.O.; Nomizo, A.; Sampaio, S. V; et al.Biochemical and Functional Characterization of an L-Amino Acid Oxidase Isolated from Bothrops pirajai Snake Venom. Bioorg Med Chem2006, 14, 7034–7043, doi: 10.1016/j.bmc.2006.06.025.
  172. Toyama, M.H.; Toyama, D. de O.; Passero, L.F.D.; Laurenti, M.D.; Corbett, C.E.; Tomokane, T.Y.; Fonseca, F. V; Antunes, E.; Joazeiro, P.P.; Beriam, L.O.S.; et al. Isolation of a New L-Amino Acid Oxidase from Crotalus durissus cascavella Venom. Toxicon2006, 47, 47–57, doi: 10.1016/j.toxicon.2005.09.008.
  173. Soares, T.G.; Santos, J.L. Dos; Alvarenga, V.G. de; Santos, J.S.C.; Leclercq, S.Y.; Faria, C.D.; Oliveira, M.A.A.; Bemquerer, M.P.; Sanchez, E.O.F.; de Lima, M.E.; et al. Biochemical and Functional Properties of a New L-Amino Acid Oxidase (LAAO) from Micrurus lemniscatus Snake Venom. Int J Biol Macromol2020, 154, 1517–1527, doi: 10.1016/j.ijbiomac.2019.11.033.
  174. Samel, M.; Vija, H.; Rönnholm, G.; Siigur, J.; Kalkkinen, N.; Siigur, E. Isolation and Characterization of an Apoptotic and Platelet Aggregation Inhibiting L-Amino Acid Oxidase from Vipera berus berus (Common Viper) Venom. Biochim Biophys Acta2006, 1764, 707–714, doi: 10.1016/j.bbapap.2006.01.021.
  175. Suhr, S.M.; Kim, D.S. Comparison of the Apoptotic Pathways Induced by L-Amino Acid Oxidase and Hydrogen Peroxide. J Biochem1999, 125, 305–309, doi: 10.1093/oxfordjournals.jbchem.a022287.
  176. Ande, S.R.; Kommoju, P.R.; Draxl, S.; Murkovic, M.; Macheroux, P.; Ghisla, S.; Ferrando-May, E. Mechanisms of Cell Death Induction by L-Amino Acid Oxidase, a Major Component of Ophidian Venom. Apoptosis2006, 11, 1439–1451, doi:10.1007/s10495-006-7959-9.
  177. Souza, D.H.; Eugenio, L.M.; Fletcher, J.E.; Jiang, M.S.; Garratt, R.C.; Oliva, G.; Selistre-de-Araujo, H.S. Isolation and Structural Characterization of a Cytotoxic L-Amino Acid Oxidase from Agkistrodon contortrix laticinctus Snake Venom: Preliminary Crystallographic Data. Arch Biochem Biophys1999, 368, 285–290, doi:10.1006/abbi.1999.1287.
  178. Alves, R.M.; Antonucci, G.A.; Paiva, H.H.; Cintra, A.C.O.; Franco, J.J.; Mendonça-Franqueiro, E.P.; Dorta, D.J.; Giglio, J.R.; Rosa, J.C.; Fuly, A.L.; et al. Evidence of Caspase-Mediated Apoptosis Induced by l-Amino Acid Oxidase Isolated from Bothrops atrox Snake Venom. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology2008, 151, 542–550, doi: 10.1016/j.cbpa.2008.07.007.
  179. Zhang, H.; Yang, Q.; Sun, M.; Teng, M.; Niu, L. Hydrogen Peroxide Produced by Two Amino Acid Oxidases Mediates Antibacterial Actions. J Microbiol2004, 42, 336–339.
  180. Wei, X.-L.; Wei, J.-F.; Li, T.; Qiao, L.-Y.; Liu, Y.-L.; Huang, T.; He, S.-H. Purification, Characterization and Potent Lung Lesion Activity of an L-Amino Acid Oxidase from Agkistrodon blomhoffii ussurensis Snake Venom. Toxicon2007, 50, 1126–1139, doi: 10.1016/j.toxicon.2007.07.022.
  181. Izidoro, L.F.M.; Alves, L.M.; Rodrigues, V.M.; Silva, D.A.O.; Mineo, J.R. Bothrops Pirajai Snake Venom L-Amino Acid Oxidase: In Vitro Effects on Infection of Toxoplasma gondii in Human Foreskin Fibroblasts. Revista Brasileira de Farmacognosia2011, 21, 477–485, doi:10.1590/S0102-695X2011005000108.
  182. Du, X.-Y.; Clemetson, K.J. Snake Venom L-Amino Acid Oxidases. Toxicon2002, 40, 659–665, doi:10.1016/s0041-0101(02)00102-2.
  183. Belisario, M.A.; Tafuri, S.; Di Domenico, C.; Squillacioti, C.; Della Morte, R.; Lucisano, A.; Staiano, N. H2O2 Activity on Platelet Adhesion to Fibrinogen and Protein Tyrosine Phosphorylation. Biochim Biophys Acta Mol Cell Res2000, 1495, 183–193, doi:10.1016/S0167-4889(99)00160-3.
  184. Pignatelli, P.; Pulcinelli, F.M.; Lenti, L.; Gazzaniga, P.P.; Violi, F. Hydrogen Peroxide Is Involved in Collagen-Induced Platelet Activation. Blood1998, 91, 484–490.
  185. Bregge-Silva, C.; Nonato, M.C.; de Albuquerque, S.; Ho, P.L.; Junqueira de Azevedo, I.L.M.; Vasconcelos Diniz, M.R.; Lomonte, B.; Rucavado, A.; Díaz, C.; Gutiérrez, J.M.; et al. Isolation and Biochemical, Functional and Structural Characterization of a Novel l-Amino Acid Oxidase from Lachesis muta Snake Venom. Toxicon2012, 60, 1263–1276, doi: 10.1016/j.toxicon.2012.08.008.
  186. Izidoro, L.F.M.; Sobrinho, J.C.; Mendes, M.M.; Costa, T.R.; Grabner, A.N.; Rodrigues, V.M.; da Silva, S.L.; Zanchi, F.B.; Zuliani, J.P.; Fernandes, C.F.C.; et al. Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry. Biomed Res Int2014, 2014, 196754, doi:10.1155/2014/196754.
  187. Wiezel, G.A.; Rustiguel, J.K.; Morgenstern, D.; Zoccal, K.F.; Faccioli, L.H.; Nonato, M.C.; Ueberheide, B.; Arantes, E.C. Insights into the Structure, Function and Stability of Bordonein-L, the First L-Amino Acid Oxidase from Crotalusdurissus terrificus Snake Venom. Biochimie2019, 163, 33–49, doi: 10.1016/j.biochi.2019.05.009.
  188. Rey-Suárez, P.; Acosta, C.; Torres, U.; Saldarriaga-Córdoba, M.; Lomonte, B.; Núñez, V. MipLAAO, a New L-Amino Acid Oxidase from the Redtail Coral Snake Micrurus mipartitus. PeerJ2018, 2018, e4924, doi:10.7717/peerj.4924.
  189. Zhang, L.; Wei, L.-J. ACTX-8, a Cytotoxic L-Amino Acid Oxidase Isolated from Agkistrodon acutus Snake Venom, Induces Apoptosis in Hela Cervical Cancer Cells. Life Sci2007, 80, 1189–1197, doi: 10.1016/j.lfs.2006.12.024.
  190. Tan, K.K.; Bay, B.H.; Gopalakrishnakone, P. L-Amino Acid Oxidase from Snake Venom and Its Anticancer Potential. Toxicon2018, 144, 7–13.
  191. Bhattacharjee, P.; Mitra, J.; Bhattacharyya, D. L-Amino Acid Oxidase from Venoms BT - Toxins and Drug Discovery. In; Cruz, L.J., Luo, S., Gopalakrishnakone, P., Eds.; Springer Netherlands: Dordrecht, 2017; pp. 295–320 ISBN 978-94-007-6452-1.
  192. Huang, T.F.; Holt, J.C.; Lukasiewicz, H.; Niewiarowski, S. Trigramin. A Low Molecular Weight Peptide Inhibiting Fibrinogen Interaction with Platelet Receptors Expressed on Glycoprotein IIb-IIIa Complex. J Biol Chem1987, 262, 16157–16163.
  193. Calvete, J.J. The Continuing Saga of Snake Venom Disintegrins. Toxicon2013, 62, 40–49, doi: 10.1016/j.toxicon.2012.09.005.
  194. Calvete, J.J.; Moreno-Murciano, M.P.; Theakston, R.D.G.; Kisiel, D.G.; Marcinkiewicz, C. Snake Venom Disintegrins: Novel Dimeric Disintegrins and Structural Diversification by Disulphide Bond Engineering. Biochemical Journal2003, 372, 725–734, doi:10.1042/BJ20021739.
  195. Bilgrami, S.; Tomar, S.; Yadav, S.; Kaur, P.; Kumar, J.; Jabeen, T.; Sharma, S.; Singh, T.P. Crystal Structure of Schistatin, a Disintegrin Homodimer from Saw-Scaled Viper (Echis carinatus) at 2.5 Å Resolution. J Mol Biol2004, 341, 829–837, doi: 10.1016/j.jmb.2004.06.048.
  196. Carbajo, R.J.; Sanz, L.; Perez, A.; Calvete, J.J. NMR Structure of Bitistatin – a Missing Piece in the Evolutionary Pathway of Snake Venom Disintegrins. FEBS J2015, 282, 341–360, doi:10.1111/FEBS.13138.
  197. Arruda Macedo, J.; Fox, J.; Souza Castro, M. Disintegrins from Snake Venoms and Their Applications in Cancer Research and Therapy. Curr Protein Pept Sci2015, 16, 532–548, doi:10.2174/1389203716666150515125002.
  198. Calvete, J.; Juárez, P.; Sanz, L. Snake Venomics. Strategy and Applications. Journal of Mass Spectrometry2007, 42, 1405–1414, doi:10.1002/jms.1242.
  199. Jang, Y.J.; Jeon, O.H.; Kim, D.S. Saxatilin, a Snake Venom Disintegrin, Regulates Platelet Activation Associated with Human Vascular Endothelial Cell Migration and Invasion. J Vasc Res2007, 44, 129–137, doi:10.1159/000098519.
  200. Kuo, Y.J.; Chung, C.H.; Huang, T.F. From Discovery of Snake Venom Disintegrins to A Safer Therapeutic Antithrombotic Agent. Toxins (Basel)2019, 11, doi:10.3390/TOXINS11070372.
  201. Lazarovici, P.; Marcinkiewicz, C.; Lelkes, P.I. From Snake Venom’s Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins 2019, Vol. 11, Page 3032019, 11, 303, doi:10.3390/TOXINS11050303.
  202. Sánchez, E.E.; Galán, J.A.; Russell, W.K.; Soto, J.G.; Russell, D.H.; Pérez, J.C. Isolation and Characterization of Two Disintegrins Inhibiting ADP-Induced Human Platelet Aggregation from the Venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake). Toxicol Appl Pharmacol2006, 212, 59–68, doi: 10.1016/j.taap.2005.07.004.
  203. Sánchez, E.E.; Rodríguez-Acosta, A.; Palomar, R.; Lucena, S.E.; Bashir, S.; Soto, J.G.; Pérez, J.C. Colombistatin: A Disintegrin Isolated from the Venom of the South American Snake (Bothrops colombiensis) That Effectively Inhibits Platelet Aggregation and SK-Mel-28 Cell Adhesion. Arch Toxicol2009, 83, 271–279, doi:10.1007/s00204-008-0358-y.
  204. Gan, Z.R.; Gould, R.J.; Jacobs, J.W.; Friedman, P.A.; Polokoff, M.A. Echistatin. A Potent Platelet Aggregation Inhibitor from the Venom of the Viper, Echis carinatus. Journal of Biological Chemistry1988, 263, 19827–19832, doi:10.1016/s0021-9258(19)77710-2.
  205. Scarborough, R.M.; Rose, J.W.; Hsu, M.A.; Phillips, D.R.; Fried, V.A.; Campbell, A.M.; Nannizzi, L.; Charo, I.F. Barbourin: A GPIIb-IIIa-Specific Integrin Antagonist from the Venom of Sistrurus m. barbouri. Journal of Biological Chemistry1991, 266, 9359–9362, doi:10.1016/s0021-9258(18)92826-7.
  206. Selistre-de-Araujo, H.S.; Pontes, C.L.S.; Montenegro, C.F.; Martin, A.C.B.M. Snake Venom Disintegrins and Cell Migration. Toxins 2010, 2, 2606–2621, doi:10.3390/toxins2112606.
  207. Swenson, S.; Ramu, S.; Markland, F. Anti-Angiogenesis and RGD-Containing Snake Venom Disintegrins. Curr Pharm Des2007, 13, 2860–2871, doi:10.2174/138161207782023793.
  208. Uzair, B.; Atlas, N.; Malik, S.B.; Jamil, N.; Ojuolape, S.T.; Rehman, M.U.; Khan, B.A.Snake Venom as an Effective Tool Against Colorectal Cancer. Protein Pept Lett2018, 25, 626–632, doi:10.2174/0929866525666180614112935.
  209. Kini, R.M.; Doley, R. Structure, Function and Evolution of Three-Finger Toxins: Mini Proteins with Multiple Targets. Toxicon2010, 56, 855–867, doi: 10.1016/j.toxicon.2010.07.010.
  210. Rey-Suárez, P.; Floriano, R.S.; Rostelato-Ferreira, S.; Saldarriaga-Córdoba, M.; Núñez, V.; Rodrigues-Simioni, L.; Lomonte, B. Mipartoxin-I, a Novel Three-Finger Toxin, Is the Major Neurotoxic Component in the Venom of the Redtail Coral Snake Micrurus mipartitus (Elapidae). Toxicon2012, 60, 851–863.
  211. Kessler, P.; Marchot, P.; Silva, M.; Servent, D. The Three-Finger Toxin Fold: A Multifunctional Structural Scaffold Able to Modulate Cholinergic Functions. J Neurochem 2017, 142, 7–18, doi:10.1111/jnc.13975.
  212. Aird, S.D.; da Silva, N.J. Chemistry of Coralsnake Venoms. In Advances in Coralsnake Biology: With an Emphasis on South America; Eagle Mountain Publishing, L.C., 2021; pp. 399–484 ISBN 9780972015462.
  213. Nastopoulos, V. Structure of Dimeric and Monomeric Erabutoxin a Refined at 1.5 Å Resolution. Acta Crystallogr D Biol Crystallogr1998, 54, 964–974, doi:10.1107/S0907444998005125.
  214. Scarselli, M.; Spiga, O.; Ciutti, A.; Bernini, A.; Bracci, L.; Lelli, B.; Lozzi, L.; Calamandrei, D.; Maro, D. Di; Klein, S.; et al. NMR Structure of R-Bungarotoxin Free and Bound to a Mimotope of the Nicotinic Receptor. Methods2002, 1457–1463.
  215. Chung, C.; Wu, B.N.; Yang, C.C.; Chang, L.S. Muscarinic Toxin-Like Proteins from Taiwan Banded Krait (Bungarus multicinctus) Venom: Purification, Characterization and Gene Organization. Journal of Biological Chemistry2002, 383, 1397–1406, doi:10.1023/A:1019760401692.
  216. Lukyanova, E.N.; Shenkarev, Z.O.; Shulepko, M.A.; Paramonov, A.S.; Chugunov, A.O.; Janickova, H.; Dolejsi, E.; Dolezal, V.; Utkin, Y.N.; Tsetlin, V.I.; et al. Structural Insight into Specificity of Interactions between Nonconventional Three-Finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. Journal of Biological Chemistry2015, 290, 23616–23630, doi:10.1074/jbc.M115.656595.
  217. Nickitenko, A. V.; Michailov, A.M.; Betzel, C.; Wilson, K.S. Three-Dimensional Structure of Neurotoxin-1 from Naja naja oxiana Venom at 1.9 Å Resolution. FEBS Lett1993, 320, 111–117, doi:10.1016/0014-5793(93)80073-4.
  218. Pawlak, J.; Mackessy, S.P.; Fry, B.G.; Bhatia, M.; Mourier, G.; Fruchart-Gaillard, C.; Servent, D.; Ménez, R.; Stura, E.; Ménez, A.; et al. Denmotoxin, a Three-Finger Toxin from the Colubrid Snake Boiga dendrophila (Mangrove Catsnake) with Bird-Specific Activity. Journal of Biological Chemistry2006, 281, 29030–29041, doi:10.1074/jbc.M605850200.
  219. Roy, A.; Zhou, X.; Chong, M.Z.; D’Hoedt, D.; Foo, C.S.; Rajagopalan, N.; Nirthanan, S.; Bertrand, D.; Sivaraman, J.; Manjunatha Kini, R. Structural and Functional Characterization of a Novel Homodimeric Three-Finger Neurotoxin from the Venom of Ophiophagus hannah (King Cobra). Journal of Biological Chemistry2010, 285, 8302–8315, doi:10.1074/jbc.M109.074161.
  220. Pawlak, J.; Mackessy, S.P.; Sixberry, N.M.; Stura, E.A.; Le Du, M.H.; Ménez, R.; Foo, C.S.; Ménez, A.; Nirthanan, S.; Kini, R.M. Irditoxin, a Novel Covalently Linked Heterodimeric Three-Finger Toxin with High Taxon-Specific Neurotoxicity. The FASEB Journal2009, 23, 534–545, doi: https://doi.org/10.1096/fj.08-113555.
  221. Aoki-Shioi, N.; Jobichen, C.; Sivaraman, J.; Kini, R.M. Unusual Quaternary Structure of a Homodimeric Synergistic-Type Toxin from Mamba Snake Venom Defines Its Molecular Evolution. Biochemical Journal2020, 477, 3951–3962, doi:10.1042/BCJ20200529.
  222. Anadón, A.; Martínez-Larrañaga, M.R.; Valerio, L.G. Onchidal and Fasciculins. In Handbook of Toxicology of Chemical Warfare Agents: Second Edition; Elsevier Inc., 2015; pp. 411–420 ISBN 9780128001592.
  223. Utkin, Y. Last Decade Update for Three-Finger Toxins: Newly Emerging Structures and Biological Activities. World J Biol Chem2019, 10, 17–27.
  224. Kleiz-Ferreira, J.M.; Cirauqui, N.; Trajano, E.A.; Almeida, M. da S.; Zingali, R.B. Three-Finger Toxins from Brazilian Coral Snakes: From Molecular Framework to Insights in Biological Function. Toxins (Basel)2021, 13, 1–19, doi:10.3390/toxins13050328.
  225. Castillo-Beltrán, M.C.; Hurtado-Gómez, J.P.; Corredor-Espinel, V.; Ruiz-Gómez, F.J. A Polyvalent Coral Snake Antivenom with Broad Neutralization Capacity. PLoS Negl Trop Dis2018, 13, 1–14, doi: 10.1371/journal.pntd.0007250.
  226. Rey-Suárez, P.; Saldarriaga, M.; Torres, U.; Marin-villa, M.; Lomonte, B.; Núñez, V.Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms: Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon2019, 170, 85–93.
  227. Lomonte, B.; Sasa, M.; Rey-Suárez, P.; Bryan, W.; Gutiérrez, J.M. Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin. Toxins (Basel)2016, 8, doi:10.3390/toxins8050138.
  228. Bertoni, M.; Kiefer, F.; Biasini, M.; Bordoli, L.; Schwede, T. Modeling Protein Quaternary Structure of Homo- and Hetero-Oligomers beyond Binary Interactions by Homology. Sci Rep2017, 7, 10480, doi:10.1038/s41598-017-09654-8.
  229. Utkin, Y.N. Three-Finger Toxins, a Deadly Weapon of Elapid Venom - Milestones of Discovery. Toxicon2013, 62, 50–55, doi: 10.1016/j.toxicon.2012.09.007.
  230. Kini, R.M.; Koh, C.Y. Snake Venom Three-Finger Toxins and Their Potential in Drug Development Targeting Cardiovascular Diseases. Biochem Pharmacol2020, 181, 114105, doi: 10.1016/j.bcp.2020.114105.
  231. Zaqueo, K.D.; Kayano, A.M.; Domingos, T.F.S.; Moura, L.A.; Fuly, A.L.; da Silva, S.L.; Acosta, G.; Oliveira, E.; Albericio, F.; Zanchi, F.B.; et al. BbrzSP-32, the First Serine Protease Isolated from Bothrops brazili Venom: Purification and Characterization. Comp Biochem Physiol A Mol Integr Physiol2016, 195, 15–25, doi: 10.1016/j.cbpa.2016.01.021.
  232. Roldán-Padrón, O.; Castro-Guillén, J.; García-Arredondo, J.; Cruz-Pérez, M.; Díaz-Peña, L.; Saldaña, C.; Blanco-Labra, A.; García-Gasca, T. Snake Venom Hemotoxic Enzymes : Biochemical Comparison between Crotalus Species from Central Mexico. Molecules2019, 24, 1–16.
  233. Latinović, Z.; Leonardi, A.; Koh, C.Y.; Kini, R.M.; Bakija, A.T.; Pungerčar, J.; Križaj, I. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor v and X-Activating Activity. Toxins 2020, 12, 1–15, doi:10.3390/toxins12060358.
  234. Stefanelli, V.L.; Barker, T.H. The Evolution of Fibrin-Specific Targeting Strategies. J Mater Chem B2015, 3, 1177–1186, doi:10.1039/c4tb01769b.
  235. Mackessy, S. Venom Composition in Rattlesnakes: Trends and Biological Significance. In The Biology of Rattlesnakes; Hayes, W.K., Beaman, K.R., Cardwell, M.D., Bush, S.P., Eds.; Loma Linda University Press: Loma Linda, CA, 2008; pp. 495–510.
  236. Angulo, Y.; Lomonte, B. Biochemistry and Toxicology of Toxins Purified from the Venom of the Snake Bothrops asper. Toxicon2009, 54, 949–957.
  237. Gutiérrez, J.M.; Calvete, J.; Habib, A.; Harrison, R.; Williams, D.; Warrell, D. Snakebite Envenoming. Nat Rev Dis Primers2017, 3, 1–20.
  238. Serrano, S.M.T.; Maroun, R.C. Snake Venom Serine Proteinases: Sequence Homology vs. Substrate Specificity, a Paradox to Be Solved. Toxicon2005, 45, 1115–1132, doi: 10.1016/j.toxicon.2005.02.020.
  239. Serrano, S.M.T.The Long Road of Research on Snake Venom Serine Proteinases. Toxicon2013, 62, 19–26, doi: 10.1016/j.toxicon.2012.09.003.
  240. Yonamine, C.M.; Kondo, M.Y.; Nering, M.B.; Gouvêa, I.E.; Okamoto, D.; Andrade, D.; Alberto da Silva, J.A.; Prieto da Silva, Á.R.; Yamane, T.; Juliano, M.A.; et al. Enzyme Specificity and Effects of Gyroxin, a Serine Protease from the Venom of the South American Rattlesnake Crotalus durissus terrificus, on Protease-Activated Receptors. Toxicon2014, 79, 64–71.
  241. Carvalho, D.D.; Marangoni, S.; Oliveira, B.; Novello, J.C. Isolation and Characterization of a New Lectin From the Venom of the Snake Bothrops jararacussu.Biochem Mol Biol Int1998, 44, 933–938.
  242. Clemetson, K.; Morita, T.; Manjunatha Kini, R. Classification and Nomenclature of Snake Venom C-Type Lectins and Related Proteins. Toxicon2009, 54, 83.
  243. Sartim, M.A.; Sampaio, S. V Snake Venom Galactoside-Binding Lectins: A Structural and Functional Overview. Journal of Venomous Animals and Toxins including Tropical Diseases2015, 21, 1–11, doi:10.1186/s40409-015-0038-3.
  244. Arlinghaus, F.T.; Eble, J.A. C-Type Lectin-like Proteins from Snake Venoms. Toxicon2012, 60, 512–519.
  245. Vonk, F.J.; Jackson, K.; Doley, R.; Madaras, F.; Mirtschin, P.J.; Vidal, N. Snake Venom: From Fieldwork to the Clinic: Recent Insights into Snake Biology, Together with New Technology Allowing High-Throughput Screening of Venom, Bring New Hope for Drug Discovery. BioEssays2011, 33, 269–279.
  246. Chakrabarty, D.; Sarkar, A. Cytotoxic Effects of Snake Venoms. 2017, 111, 1–7.
  247. Thakur, R.; Mukherjee, A.K. Pathophysiological Significance and Therapeutic Applications of Snake Venom Protease Inhibitors. Toxicon2017, 131, 37–47.
  248. Girish, K.S.; Jagadeesha, D.K.; Rajeev, K.B.; Kemparaju, K. Snake Venom Hyaluronidase: An Evidence for Isoforms and Extracellular Matrix Degradation. Mol Cell Biochem2002, 240, 105–110, doi:10.1023/A:1020651607164.
  249. Girish, K.S.; Shashidharamurthy, R.; Nagaraju, S.; Gowda, T. V.; Kemparaju, K. Isolation and Characterization of Hyaluronidase a “Spreading Factor” from Indian Cobra (Naja naja) Venom. Biochimie2004, 86, 193–202, doi: 10.1016/j.biochi.2004.02.004.
  250. Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan as an Immune Regulator in Human Diseases. Physiol Rev2011, 91, 221–264, doi:10.1152/physrev.00052.2009.
  251. Noble, P.W. Hyaluronan and Its Catabolic Products in Tissue Injury and Repair. Matrix Biology2002, 21, 25–29, doi:10.1016/S0945-053X(01)00184-6.
  252. Ohno, S.; Im, H.J.; Knudson, C.B.; Knudson, W. Hyaluronan Oligosaccharides Induce Matrix Metalloproteinase 13 via Transcriptional Activation of NFκB and P38 MAP Kinase in Articular Chondrocytes. Journal of Biological Chemistry2006, 281, 17952–17960, doi:10.1074/jbc.M602750200.
  253. Frobert, Y.; Créminon, C.; Cousin, X.; Rémy, M.H.; Chatel, J.M.; Bon, S.; Bon, C.; Grassi, J.Acetylcholinesterases from Elapidae Snake Venoms: Biochemical, Immunological and Enzymatic Characterization. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology1997, 1339, 253–267, doi:10.1016/S0167-4838(97)00009-5.
  254. Karlsson, E.; Mbugua, P.M.; Rodriguez-Ithurralde, D. Fasciculins, Anticholinesterase Toxins from the Venom of the Green Mamba Dendroaspis Angusticeps. J Physiol (Paris)1984, 79, 232–240.
  255. Bin Asad, M.H.H.; Iqbal, M.; Akram, M.R.; Khawaja, N.R.; Muneer, S.; Shabbir, M.Z.; Khan, M.S.; Murtaza, G.; Hussain, I. 5′-Nucleotidases of Naja naja Karachiensis Snake Venom: Their Determination, Toxicities and Remedial Approach by Natural Inhibitors (Medicinal Plants). Acta Poloniae Pharmaceutica - Drug Research2016, 73, 667–673.
  256. Ouyang, C.; Huang, T.F. Inhibition of Platelet Aggregation by 5′-Nucleotidase Purified from Trimeresurus gramineus Snake Venom. Toxicon1983, 21, 491–501, doi:10.1016/0041-0101(83)90127-7.
  257. Ouyang, C.; Huang, T.F. Platelet Aggregation Inhibitors from Agkistrodon acutus Snake Venom. Toxicon1986, 24, 1099–1106, doi:10.1016/0041-0101(86)90136-4.
  258. Trummal, K.; Samel, M.; Aaspõllu, A.; Tõnismägi, K.; Titma, T.; Subbi, J.; Siigur, J.; Siigur, E. 5′-Nucleotidase from Vipera lebetina Venom. Toxicon2015, 93, 155–163, doi: 10.1016/j.toxicon.2014.11.234.
  259. Aird, S.D. Ophidian Envenomation Strategies and the Role of Purines. Toxicon2002, 40, 335–393, doi:10.1016/S0041-0101(01)00232-X.
  260. Aloulou, A.; Rahier, R.; Arhab, Y.; Noiriel, A.; Abousalham, A. Phospholipases: An Overview. In Methods in Molecular Biology; Methods Mol Biol, 2018; Vol. 1835, pp. 69–105.
  261. Jiménez-Charris, E.; Montealegre-Sanchez, L.; Solano-Redondo, L.; Mora-Obando, D.; Camacho, E.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Proteomic and Functional Analyses of the Venom of Porthidium lansbergiilansbergii (Lansberg’s Hognose Viper) from the Atlantic Department of Colombia. J Proteomics2015, 114, 287–299, doi: 10.1016/j.jprot.2014.11.016.
  262. Mora-Obando, D.; Salazar-Valenzuela, D.; Pla, D.; Lomonte, B.; Guerrero-Vargas, J.A.; Ayerbe, S.; Gibbs, H.L.; Calvete, J.J. Venom Variation in Bothrops asper Lineages from North-Western South America. J Proteomics2020, 229, doi: 10.1016/j.jprot.2020.103945.
  263. Pereañez, J.A.; Preciado, L.M.; Fernández, J.; Camacho, E.; Lomonte, B.; Castro, F.; Cañas, C.A.; Galvis, C.; Castaño, S. Snake Venomics, Experimental Toxic Activities and Clinical Characteristics of Human Envenomation by Bothrocophias myersi (Serpentes: Viperidae) from Colombia. J Proteomics2020, 220, doi: 10.1016/j.jprot.2020.103758.
  264. Rey-Suárez, P.; Núñez, V.; Fernández, J.; Lomonte, B. Integrative Characterization of the Venom of the Coral Snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, Toxicity, and Cross-Neutralization by Antivenom. J Proteomics2016, 136, 262–273, doi: 10.1016/j.jprot.2016.02.006.
  265. Bernheimer, A.W.; Linder, R.; Weinstein, S.A.; Kim, K.S. Isolation and Characterization of a Phospholipase B from Venom of Collett’s Snake, Pseudechis colletti. Toxicon1987, 25, 547–554, doi:10.1016/0041-0101(87)90290-x.
  266. Yamazaki, Y.; Koike, H.; Sugiyama, Y.; Motoyoshi, K.; Wada, T.; Hishinuma, S.; Mita, M.; Morita, T. Cloning and Characterization of Novel Snake Venom Proteins That Block Smooth Muscle Contraction. Eur J Biochem2002, 269, 2708–2715, doi:10.1046/j.1432-1033.2002.02940. x.
  267. Brown, R.L.; Lynch, L.L.; Haley, T.L.; Arsanjani, R. Pseudechetoxin Binds to the Pore Turret of Cyclic Nucleotide-Gated Ion Channels. Journal of General Physiology2003, 122, 749–760, doi:10.1085/jgp.200308823.
  268. Lodovicho, M.E.; Costa, T.R.; Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.F.; Carone, S.E.; Rosa, J.C.; Pucca, M.B.; Cerni, F.A.; Arantes, E.C.; et al. Investigating Possible Biological Targets of Bj-CRP, the First Cysteine-Rich Secretory Protein (CRISP) Isolated from Bothrops jararaca Snake Venom. Toxicol Lett2017, 265, 156–169, doi: 10.1016/j.toxlet.2016.12.003.
  269. Kostiza, T.; Meier, J. Nerve Growth Factors from Snake Venoms: Chemical Properties, Mode of Action and Biological Significance. Toxicon1996, 34, 787–806, doi:10.1016/0041-0101(96)00023-2.
  270. Yamazaki, Y.; Matsunaga, Y.; Tokunaga, Y.; Obayashi, S.; Saito, M.; Morita, T. Snake Venom Vascular Endothelial Growth Factors (VEGF-Fs) Exclusively Vary Their Structures and Functions among Species. Journal of Biological Chemistry2009, 284, 9885–9891, doi:10.1074/jbc.M809071200.
  271. Osipov, A. V.; Terpinskaya, T.I.; Kryukova, E. V.; Ulaschik, V.S.; Paulovets, L. V.; Petrova, E.A.; Blagun, E. V.; Starkov, V.G.; Utkin, Y.N. Nerve Growth Factor from Cobra Venom Inhibits the Growth of Ehrlich Tumor in Mice. Toxins (Basel)2014, 6, 784–795, doi:10.3390/toxins6030784.
  272. Koh, D.C.I.; Armugam, A.; Jeyaseelan, K. Sputa Nerve Growth Factor Forms a Preferable Substitute to Mouse 7S-β Nerve Growth Factor. Biochemical Journal2004, 383, 149–158, doi:10.1042/BJ20040569.
  273. Takahashi, H.; Hattori, S.; Iwamatsu, A.; Takizawa, H.; Shibuya, M. A Novel Snake Venom Vascular Endothelial Growth Factor (VEGF) Predominantly Induces Vascular Permeability through Preferential Signaling via VEGF Receptor-1. Journal of Biological Chemistry2004, 279, 46304–46314, doi:10.1074/jbc.M403687200.
  274. Flight, S.M.; Johnson, L.A.; Du, Q.S.; Warner, R.L.; Trabi, M.; Gaffney, P.J.; Lavin, M.F.; De Jersey, J.; Masci, P.P. Textilinin-1, an Alternative Anti-Bleeding Agent to Aprotinin: Importance of Plasmin Inhibition in Controlling Blood Loss. Br J Haematol2009, 145, 207–211, doi:10.1111/j.1365-2141.2009.07605. x.
  275. Masci, P.P.; Whitaker, A.N.; Sparrow, L.G.; De Jersey, J.; Winzor, D.J.; Watters, D.J.; Lavin, M.F.; Gaffney, P.J. Textilinins from Pseudonaja textilis textilis. Characterization of Two Plasmin Inhibitors That Reduce Bleeding in an Animal Model. Blood Coagulation and Fibrinolysis2000, 11, 385–393, doi:10.1097/00001721-200006000-00011.
  276. Morjen, M.; Kallech-ziri, O.; Bazaa, A.; Othman, H.; Mabrouk, K.; Zouari-kessentini, R.; Sanz, L.; Calvete, J.J.; Srairi-Abid, N.; El Ayeb, M.; et al. PIVL, a New Serine Protease Inhibitor from Macrovipera lebetina Transmediterranea Venom, Impairs Motility of Human Glioblastoma Cells. Matrix Biology2013, 32, 52–62, doi: 10.1016/j.matbio.2012.11.015.
  277. Fernández, J.; Gutiérrez, J.M.; Calvete, J.J.; Sanz, L.; Lomonte, B. Characterization of a Novel Snake Venom Component: Kazal-Type Inhibitor-like Protein from the Arboreal Pitviper Bothriechis schlegelii.Biochimie2016, 125, 83–90, doi: 10.1016/j.biochi.2016.03.004.
  278. Wagstaff, S.C.; Favreau, P.; Cheneval, O.; Laing, G.D.; Wilkinson, M.C.; Miller, R.L.; Stöcklin, R.; Harrison, R.A. Molecular Characterisation of Endogenous Snake Venom Metalloproteinase Inhibitors. Biochem Biophys Res Commun2008, 365, 650–656, doi: 10.1016/j.bbrc.2007.11.027.
  279. Ullah, A.; Ullah, K.; Ali, H.; Betzel, C.; Rehman, S.U. The Sequence and a Three-Dimensional Structural Analysis Reveal Substrate Specificity among Snake Venom Phosphodiesterases. Toxins (Basel)2019, 11, doi:10.3390/toxins11110625.
  280. Uzair, B.; Khan, B.A.; Sharif, N.; Shabbir, F.; Menaa, F. Phosphodiesterases (PDEs) from Snake Venoms: Therapeutic Applications. Protein Pept Lett2018, 25, 612–618, doi:10.2174/0929866525666180628160616.
  281. Gao, J.F.; Qu, Y.F.; Zhang, X.Q.; He, Y.; Ji, X. Neonate-to-Adult Transition of Snake Venomics in the Short-Tailed Pit Viper, Gloydius brevicaudus. J Proteomics2013, 84, 148–157, doi: 10.1016/j.jprot.2013.04.003.
  282. Yuh, F.P.; Wong, P.T.H.; Kumar, P.P.; Hodgson, W.C.; Kini, R.M. Ohanin, a Novel Protein from King Cobra Venom, Induces Hypolocomotion and Hyperalgesia in Mice. Journal of Biological Chemistry2005, 280, 13137–13147, doi:10.1074/jbc.M414137200.
  283. Vejayan, J.; Khoon, T.L.; Ibrahim, H. Comparative Analysis of the Venom Proteome of Four Important Malaysian Snake Species. Journal of Venomous Animals and Toxins Including Tropical Diseases2014, 20, doi:10.1186/1678-9199-20-6.
  284. Tan, C.H.; Tan, K.Y.; Tan, N.H. A Protein Decomplexation Strategy in Snake Venom Proteomics. Methods Mol Biol2019, 1871, 83–92, doi:10.1007/978-1-4939-8814-3_5.
  285. Rey-Suárez, P.; Núñez, V.; Gutiérrez, J.M.; Lomonte, B. Proteomic and Biological Characterization of the Venom of the Redtail Coral Snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J Proteomics2011, 75, 655–667, doi: 10.1016/J.JPROT.2011.09.003.
  286. Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus Coral Snakes: Evolutionary Trends in Compositional Patterns Emerging from Proteomic Analyses. Toxicon2016, 122, 7–25, doi: 10.1016/J.TOXICON.2016.09.008.
  287. Fox, J.W.; Serrano, S.M.T. Exploring Snake Venom Proteomes: Multifaceted Analyses for Complex Toxin Mixtures. Proteomics2008, 8, 909–920, doi:10.1002/PMIC.200700777.
  288. Ghezellou, P.; Garikapati, V.; Kazemi, S.M.; Strupat, K.; Ghassempour, A.; Spengler, B. A Perspective View of Top-down Proteomics in Snake Venom Research. Rapid Communications in Mass Spectrometry2019, 33, 20–27, doi:10.1002/rcm.8255.
  289. Alape-Girón, A.; Sanz, L.; Escolano, J.; Flores-Díaz, M.; Madrigal, M.; Sasa, M.; Calvete, J.J. Snake Venomics of the Lancehead Pitviper Bothrops asper: Geographic, Individual, and Ontogenetic Variations. J Proteome Res2008, 7, 3556–3571, doi:10.1021/PR800332P.
  290. Núñez, V.; Cid, P.; Sanz, L.; de La Torre, P.; Angulo, Y.; Lomonte, B.; Gutiérrez, J.M.; Calvete, J.J. Snake Venomics and Antivenomics of Bothrops atrox Venoms from Colombia and the Amazon Regions of Brazil, Perú and Ecuador Suggest the Occurrence of Geographic Variation of Venom Phenotype by a Trend towards Paedomorphism. J Proteomics2009, 73, 57–78, doi: 10.1016/j.jprot.2009.07.013.
  291. Jiménez-Charris, E.; Montealegre-Sanchez, L.; Solano-Redondo, L.; Mora-Obando, D.; Camacho, E.; Castro-Herrera, F.; Fierro-Pérez, L.; Lomonte, B. Proteomic and Functional Analyses of the Venom of Porthidium lansbergii lansbergii (Lansberg’s Hognose Viper) from the Atlantic Department of Colombia. J Proteomics2015, 114, 287–299, doi: 10.1016/j.jprot.2014.11.016.
  292. Salazar-Valenzuela, D.; Mora-Obando, D.; Fernández, M.L.; Loaiza-Lange, A.; Gibbs, H.L.; Lomonte, B. Proteomic and Toxicological Profiling of the Venom of Bothrocophias campbelli, a Pitviper Species from Ecuador and Colombia. Toxicon2014, 90, 15–25, doi:10.1016/j.toxicon.2014.07.012.
  293. Quintana-Castillo, J.C.; Johana vargas, L.; Segura, C.; Estrada-Gómez, S.; Bueno-Sánchez, J.C.; Alarcón, J.C. Characterization of the Venom of C. d. Cumanesis of Colombia: Proteomic Analysis and Antivenomic Study. Toxins (Basel)2018, 10, doi:10.3390/toxins10020085.
  294. Madrigal, M.; Sanz, L.; Flores-Díaz, M.; Sasa, M.; Núñez, V.; Alape-Girón, A.; Calvete, J.J.Snake Venomics across Genus Lachesis. Ontogenetic Changes in the Venom Composition of Lachesis Stenophrys and Comparative Proteomics of the Venoms of Adult Lachesis melanocephala and Lachesis acrochorda.J Proteomics2012, 77, 280–297, doi: 10.1016/j.jprot.2012.09.003.
  295. Céspedes, N.; Castro, F.; Jiménez, E.; Montealegre, L.; Castellanos, A.; Cañas, C.; Arévalo-Herrera, M.; Herrera, S. Biochemical Comparison of Venoms from Young Colombian Crotalus durissus cumanensis and Their Parents. Journal of Venomous Animals and Toxins including Tropical Diseases2010, 16, 268–284.
  296. Culma, M.F.; Pereañez, J.A.; Rangel, V.Ń.; Lomonte, B. Snake Venomics of Bothrops punctatus, a Semiarboreal Pitviper Species from Antioquia, Colombia. PeerJ2014, 2, 1–16, doi:10.7717/PEERJ.246.
  297. Lomonte, B.; Pla, D.; Sasa, M.; Tsai, W.C.; Solórzano, A.; Ureña-Díaz, J.M.; Fernández-Montes, M.L.; Mora-Obando, D.; Sanz, L.; Gutiérrez, J.M.; et al. Two Color Morphs of the Pelagic Yellow-Bellied Sea Snake, Pelamis platurus, from Different Locations of Costa Rica: Snake Venomics, Toxicity, and Neutralization by Antivenom. J Proteomics2014, 103, 137–152, doi: 10.1016/j.jprot.2014.03.034.
  298. Lazarovici, P.; Marcinkiewicz, C.; Lelkes, P.I. From Snake Venom’s Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins (Basel)2019, 11, 1–15, doi:10.3390/toxins11050303.
  299. Karapetian, H. Reptilase Time (RT). Methods Mol Biol2013, 992, 273–277, doi:10.1007/978-1-62703-339-8_20.
  300. Rodríguez-Vargas, A.; Franco-Vásquez, A.; Bolívar-Barbosa, J.; Vega, N.; Reyes-Montaño, E.; Arreguín-Espinosa, R.; Carbajal-Saucedo, A.; Angarita-Sierra, T.; Ruíz-Gómez, F. Unveiling the Venom composition of the Coral Venom Snakes Micrurus helleri, M. medemi, and M. sangilensis.Toxins 2023, 15, doi:10.3390/toxins15110622.
  301. Garrido Garrido, M.B.; Herráez, A. Guía de Jmol. Available online: https://biomodel.uah.es/Jmol/jmolguia/otrasopciones.html (accessed on 12/04/2023).
  302. González Mañas, J.M. Curso de Biomoléculas. Universidad del País Vasco. Available online: https://www.ehu.eus/biomoleculas/index.htm (accessed on 12/04/2023).
  303. Protein Data Bank (PDB). Available online: https://www.rcsb.org/ (accessed on 12/04/2023).
  304. Blender. Available online: https://www.blender.org/ (accessed on 12/04/2024).
  305. Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available online: http://jmol.sourceforge.net/ (accessed on 12/04/2023).

Sketchfab. Website for Visualizing and Sharing 3D Content Online. Available online: https://sketchfab.com/ (accessed on 12/04/2023).




Descargas


bg
Copyright: © 2024 por los autores. Publicación de acceso abierto bajo los términos y condiciones de la licencia Creative Commons Attribution ( CC BY-NC-ND 4.0 )

Compartir




Fichas de especies

¿Cómo reconócerlas?