arrow-forward Mordeduras, venenos y serpientes venenosas de Colombia

Capítulo 4
Un universo inexplorado: Venenos y toxinas de los colúbridos

​​​​​​​​​Por: Juan David Bayona-Serrano, Kristian Alberto Torres-Bonilla, Teddy Angarita-Sierra​

Palabras Clave​: Colubridae, serpientes con colmillos traseros, veneno, enzimas proteolíticas, envenenamiento. ​

  • book-open 38 Paginas
  • time 2.5​ Horas de lectura

​DOI: 10.33610/696192ngczdp


Entre los estudios toxicológicos de los venenos de serpientes existe un sesgo histórico hacia la comprensión de los venenos de las serpientes con colmillos frontales (vipéridos y elápidos), debido a que se consideran de mayor importancia médica. En consecuencia, se ha desatendido el estudio de los venenos y toxinas de las serpientes aglifas y con colmillos maxilares traseros (opistoglifas), haciendo que la mayoría de las especies de colúbridos carezcan de información sobre la composición o función de su veneno. Sin embargo, en las últimas dos décadas numerosos estudios han expuesto la increíble diversidad de toxinas y actividades biológicas de los venenos de los colúbridos. No obstante, estas investigaciones solo han revelado parcialmente su riqueza y variabilidad, convirtiéndolas en uno de los más interesantes y promisorios campos de investigación para la búsqueda de nuevos tipos de proteínas y funciones enzimáticas. En este capítulo resumimos la información disponible sobre las toxinas y venenos de los colúbridos colombianos, así como la información disponible sobre su epidemiología y su significado biológico. Además, contrastamos esa información con sus posibles aplicaciones, datos evolutivos y perspectivas futuras, con la esperanza de aumentar el interés de la comunidad científica por este asombroso grupo de serpientes «no-venenosas» y en su mayoría inofensivas.

  1. Mackessy, S.P. Handbook of Venoms and Toxins of Reptiles.; 1st ed.; CRC Press: Boca Raton, 2021.
  2. Junqueira-De-Azevedo, I.L.M.; Bastos, C.M.V.; Ho, P.L.; Luna, M.S.; Yamanouye, N.; Casewell, N.R. Venom-Related Transcripts from Bothropsjararaca Tissues Provide Novel Molecular Insights into the Production and Evolution of Snake Venom. Mol. Biol. Evol.2015, 32, 754–766, doi:10.1093/molbev/msu337.
  3. Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus Coral Snakes: Evolutionary Trends in Compositional Patterns Emerging from Proteomic Analyses. Toxicon2016, 122, 7–25.
  4. Bucaretchi, F.; De Capitani, E.M.; Vieira, R.J.; Rodrigues, C.K.; Zannin, M.; Da Silva, N.J.; Casais-e-Silva, L.L.; Hyslop, S. Coral Snake Bites (Micrurus spp.) in Brazil: A Review of Literature Reports. Clin. Toxicol.2016, 54, 222–234.
  5. Oliveira, F.N.; Brito, M.T.; de Morais, I.C.O.; Fook, S.M.L.; de Albuquerque, H.N. Accidents Caused by Bothrops and Bothropoides in the State of Paraiba: Epidemiological and Clinical Aspects. Rev. Soc. Bras. Med. Trop.2010, 43, 662–667, doi:10.1590/S0037-86822010000600012.
  6. Kularatne, S.A.M.; Budagoda, B.D.S.S.; Gawarammana, I.B.; Kularatne, W.K.S. Epidemiology, Clinical Profile and Management Issues of Cobra (Naja Naja) Bites in Sri Lanka: First Authenticated Case Series. Trans. R. Soc. Trop. Med. Hyg.2009, 103, 924–930, doi:10.1016/J.TRSTMH.2009.04.002.
  7. Otero-Patiño, R. Epidemiological, Clinical and Therapeutic Aspects of Bothrops asper Bites. Toxicon2009, 54, 998–1011, doi:10.1016/j.toxicon.2009.07.001.
  8. Uetz, P.; Freed, P.; Hošek, J. The Reptile Database Available online: https://reptile-database.reptarium.cz/ (accessed on 23 January 2024).
  9. Zaher H, Murphy RW, Arredondo JC, Graboski R, Machado-Filho PR, Mahlow K, et al. Largescale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS ONE 2019, 14(5), e0216148. https://doi.org/10.1371/journal.pone.0216148.
  10. Peñuela-Gómez, S.M. El Abandono En La Investigación Toxinológica de Los Colúbridos Opistoglifos. Mem. Conf. Interna Med. Aprovech. Fauna Silv. Exót. Conv.2010, 0, 24–26.
  11. Junqueira-de-Azevedo, I.L.M.; Campos, P.F.; Ching, A.T.C.; Mackessy, S.P. Colubrid Venom Composition: An -Omics Perspective. Toxins (Basel).2016, 8, 1–24, doi:10.3390/toxins8080230.
  12. Campbell, J.A.; Lamar, W.W.; Brodie, E.D.; others The Venomous Reptiles of the Western Hemisphere; Comstock Pub. Associates Ithaca [NY], 2004; Vol. 1.
  13. Kardong, K. V The Evolution of the Venom Apparatus in Snakes From Colubrids To Viperids & Elapids. Mem. Inst. Butantan1982, 4, 106–118.
  14. Kardong, K. V Colubrid Snakes and Duvernoy’s “Venom” Glands. J. Toxicol. - Toxin Rev.2002, 21, 1–19, doi:10.1081/TXR-120004739.
  15. Jackson, T.N.W.; Young, B.; Underwood, G.; McCarthy, C.J.; Kochva, E.; Vidal, N.; van der Weerd, L.; Nabuurs, R.; Dobson, J.; Whitehead, D.; et al. Endless Forms Most Beautiful: The Evolution of Ophidian Oral Glands, Including the Venom System, and the Use of Appropriate Terminology for Homologous Structures. Zoomorphology 2016, 136, 107–130, doi:10.1007/S00435-016-0332-9.
  16. de Oliveira, L.; Jared, C.; da Costa Prudente, A.L.; Zaher, H.; Antoniazzi, M.M. Oral Glands in Dipsadine “Goo-Eater” Snakes: Morphology and Histochemistry of the Infralabial Glands in Atractus reticulatus, Dipsas indica, and Sibynomorphusmikanii. Toxicon2008, 51, 898–913, doi:10.1016/J.TOXICON.2007.12.021.
  17. Weinstein, S.A.; Warrell, D.A.; White, J.; Keyler, D.E. “Venomous? Bites from Non-Venomous Snakes: A Critical Analysis of Risk and Management of “Colubrid? Snake Bites (Livre Numérique Google). 2011, 364.
  18. Gaiarsa, M.P.; de Alencar, L.R. V; Martins, M. Natural History of Pseudoboine Snakes. Pap. Avulsos Zool.2013, 53, 261–283, doi:10.1590/S0031-10492013001900001.
  19. Giraudo, A.R.; Arzamendia, V.; Bellini, G.P.; Bessa, C.A.; Costanzo, M.B. Ecología de Una Gran Serpiente Sudamericana, Hydrodynastes gigas (Serpentes: Dipsadidae). Rev. Mex. Biodivers.2014, 85, 1206–1216, doi:10.7550/rmb.43765.
  20. Todd, B.D.; Willson, J.D.; Winne, C.T.; Semlitsch, R.D.; Gibbons, J.W. Ecology of the Southeastern Crowned Snake, Tantilla coronata. Copeia2008 (2), 388–394, (2008). doi:10.1643/CE-06-289.
  21. Marques, O.A. V; Muniz-Da-Silva, D.F.; Barbo, F.E.; Cardoso, S.R.T.; Maia, D.C.; Almeida-Santos, S.M. Ecology of the Colubrid Snake Spilotes pullatus from the Atlantic Forest of Southeastern Brazil. Herpetologica, 2014, 70, 407–416, doi:10.1655/HERPETOLOGICA-D-14-00012.
  22. Corrêa, D.N. Ecologia Alimentar Das Serpentes Semi-Aquáticas Erythrolamprus jaegeri jaegeri (Günter, 1858) e Erythrolamprus poecilogyrus sublineatus (Cope, 1860) (Serpentes , Dipsadidae) Na Região Costeira Do Extremo Sul Do Brasil. An. Acad. Bras. Ciênc. 2016, 88, (1), 293–308, https://doi.org/10.1590/0001-3765201520140570
  23. Barbo, F.E.; Marques, O.A. V.; Sawaya, R.J. Diversity, Natural History, and Distribution of Snakes in the Municipality of São Paulo. South Am. J. Herpetol.2011, 6, 135–160, doi:10.2994/057.006.0301.
  24. Alencar, L.R. V; Gaiarsa, M.P.; Martins, M. The Evolution of Diet and Microhabitat Use in Pseudoboine Snakes. https://doi.org/10.2994/SAJH-D-13-00005.12013, 8, 60–66, doi:10.2994/SAJH-D-13-00005.1.
  25. de Aguiar, L.F.S.; Di-Bernardo, M. Diet and Feeding Behavior of Helicops Infrataeniatus (Serpentes: Colubridae: Xenodontinae) in Southern Brazil. Stud. Neotrop. Fauna Environ2010, 39, 7–14, doi:10.1080/01650520412331270927.
  26. Serna-Botero, V.; Marín-Martínez, M.; Velásquez-Guarín, D.; Ramírez-Chaves, H.E. Boyacá Spiny Rat, Proechimys chrysaeolus (Mammalia: Echimyidae), a New Prey Item of the Banded Calico Snake, Oxyrhopus petolarius (Reptilia: Dipsadidae). Herpetol. Notes2019, 12, 651–653.
  27. Henderson, R.W. Trophic Relationships and Foraging Strategies of Some New World Tree Snakes (Leptophis, Oxybelis, Uromacer). Amphibia-Reptilia1982, 3, 71–80, doi:10.1163/156853882X00185.
  28. Modahl, C.M.; Mackessy, S.P. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front. Ecol. Evol.2019, 7, 1–18, doi:10.3389/fevo.2019.00279.
  29. Modahl, C.M.; Mrinalini; Frietze, S.; Mackessy, S.P. Adaptive Evolution of Distinct Prey-Specific Toxin Genes in Rear-Fanged Snake Venom. Proc. R. Soc. B Biol. Sci.2018, 285, doi:10.1098/rspb.2018.1003.
  30. Sánchez, M.N.; Teibler, G.P.; López, C.A.; Mackessy, S.P.; Peichoto, M.E. Assessment of the Potential Toxicological Hazard of the Green Parrot Snake (Leptophis ahaetulla marginatus): Characterization of Its Venom and Venom-Delivery System. Toxicon2018, 148, 202–212, doi:10.1016/j.toxicon.2018.04.027.
  31. Sánchez, M.N.; Teibler, G.P.; Sciani, J.M.; Casafús, M.G.; Maruñak, S.L.; Mackessy, S.P.; Peichoto, M.E. Unveiling Toxicological Aspects of Venom from the Aesculapian False Coral Snake Erythrolamprus aesculapii. Toxicon2019, 164, 71–81, doi:10.1016/j.toxicon.2019.04.007.
  32. Torres-Bonilla, K.A.; Andrade-Silva, D.; Serrano, S.M.T.; Hyslop, S. Biochemical Characterization of Venom from Pseudoboa neuwiedii (Neuwied’s False Boa; Xenodontinae; Pseudoboini). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.2018, 213, 27–38, doi:10.1016/J.CBPC.2018.06.003.
  33. Torres-Bonilla, K.A.; Schezaro-Ramos, R.; Floriano, R.S.; Rodrigues-Simioni, L.; Bernal-Bautista, M.H.; Alice da Cruz-Höfling, M. Biological Activities of Leptodeira annulata (Banded Cat-Eyed Snake) Venom on Vertebrate Neuromuscular Preparations. Toxicon2016, 119, 345–351, doi:10.1016/j.toxicon.2016.07.004.
  34. Torres-Bonilla, K.A.; Panunto, P.C.; Pereira, B.B.; Zambrano, D.F.; Herrán-Medina, J.; Bernal, M.H.; Hyslop, S. Toxinological Characterization of Venom from Leptodeira annulata (Banded Cat-Eyed Snake; Dipsadidae, Imantodini). Biochimie2020, 174, 171–188, doi:10.1016/J.BIOCHI.2020.04.006.
  35. Salomão, M.D.G.; Albolea, A.B.P.; Almeida Santos, S.M. Colubrid Snakebite: A Public Health Problem in Brazil. Herpetol. Rev.2003, 34, 307–312.
  36. Angarita-Sierra, T.; Montañez-Méndez, A.; Toro-Sánchez, T.; Rodríguez-Vargas, A.; Angarita-Sierra, T.; Montañez-Méndez, A.; Toro-Sánchez, T.; Rodríguez-Vargas, A. A Case of Envenomation by the False Fer-de-Lance Snake Leptodeira annulata (Linnaeus, 1758) in the Department of La Guajira, Colombia. Biomedica2020, 40, 20–26, doi:10.7705/biomedica.4773.
  37. Hill, R.E.; Mackessy, S.P. Characterization of Venom (Duvernoy’s Secretion) from Twelve Species of Colubrid Snakes and Partial Sequence of Four Venom Proteins. Toxicon2000, 38, 1663–1687, doi:10.1016/S0041-0101(00)00091-X.
  38. Hill, R.E.; Mackessy, S.P. Venom Yields from Several Species of Colubrid Snakes and Differential Effects of Ketamine. Toxicon1997, 35, 671–678, doi:10.1016/S0041-0101(96)00174-2.
  39. Mackessy, S.P. Biochemistry And Pharmacology Of Colubrid Snake Venoms. J. Toxicol. Toxin Rev,2002, 21, 43–83, doi:10.1081/TXR-120004741.
  40. Modahl, C.M.; Saviola, A.J.; Mackessy, S.P. Venom Genomics and Proteomics. Venom Genomics and Proteomics2016, 51–79, doi:10.1007/978-94-007-6416-3.
  41. Peichoto, M.E.; Tavares, F.L.; Santoro, M.L.; MacKessy, S.P. Venom Proteomes of South and North American Opisthoglyphous (Colubridae and Dipsadidae) Snake Species: A Preliminary Approach to Understanding Their Biological Roles. Comp. Biochem. Physiol. - Part D Genomics Proteomics2012, 7, 361–369, doi:10.1016/j.cbd.2012.08.001.
  42. Bayona-Serrano, J.D.; Viala, V.L.; Rautsaw, R.M.; Schramer, T.D.; Barros-Carvalho, G.A.; Nishiyama, M.Y.; Freitas-de-Sousa, L.A.; Moura-da-Silva, A.M.; Parkinson, C.L.; Grazziotin, F.G.; et al. Replacement and Parallel Simplification of Nonhomologous Proteinases Maintain Venom Phenotypes in Rear-Fanged Snakes. Mol. Biol. Evol.2020, 37, 3563–3575, doi:10.1093/MOLBEV/MSAA192.
  43. Medeiros, C.R. de; Souza, S.N. de; Silva, M.C. da; Ventura, J. de S.; Piorelli, R. de O.; Puorto, G. Bites by Tomodon Dorsatus (Serpentes, Dipsadidae): Clinical and Epidemiological Study of 86 Cases. Toxicon2019, 162, 40–45, doi:10.1016/j.toxicon.2019.03.005.
  44. Diaz, F.; Navarrete, L.F.; Pefaur, J.; Rodriguez-Acosta, A. Envenomation by Neotropical Opistoglyphous Colubrid Thamnodynastes cf. pallidus Linné, 1758 (Serpentes:Colubridae) in Venezuela. Rev. Inst. Med. Trop. Sao Paulo2004, 46, 287–290, doi:10.1590/S0036-46652004000500011.
  45. Prado-Franceschi, J.; Hyslop, S. South American Colubrid Envenomations. J. Toxicol. - Toxin Rev.2002, 21, 117–158.
  46. Rebelato, M.M.; Ferri, V.Y.K.; Dalmolin, D.A.; Tozetti, A.M.; Verrastro, L. Envenomation by Opisthoglyphous Snake Thamnodynastes hypoconia (Cope, 1860) (Dipsadinae: Tachymenini) in Southern Brazil. Toxicon2021, 189, 1–6, doi:10.1016/J.TOXICON.2020.10.022.
  47. Gutiérrez, J.M.; Sasa, M. Bites and Envenomations by Colubrid Snakes in Mexico and Central America. J. Toxicol. - Toxin Rev.2002, 21, 105–115, doi:10.1081/TXR-120004743.
  48. Menegucci, R.C.; Bernarde, P.S.; Monteiro, W.M.; Bisneto, P.F.; Martins, M. Envenomation by an Opisthoglyphous Snake, Erythrolamprus aesculapii (Dipsadidae), in Southeastern Brazil. Rev. Soc. Bras. Med. Trop.2019, 52, 0–2, doi:10.1590/0037-8682-0055-2019.
  49. de Medeiros, C.R.; Hess, P.L.; Nicoleti, A.F.; Sueiro, L.R.; Duarte, M.R.; de Almeida-Santos, S.M.; França, F.O.S. Bites by the Colubrid Snake Philodryas patagoniensis: A Clinical and Epidemiological Study of 297 Cases. Toxicon2010, 56, 1018–1024, doi:10.1016/j.toxicon.2010.07.006.
  50. Oliveira, J.S.; Sant’Anna, L.B.; Oliveira Junior, M.C.; Souza, P.R.M.; Andrade Souza, A.S.; Ribeiro, W.; Vieira, R.P.; Hyslop, S.; Cogo, J.C. Local and Hematological Alterations Induced by Philodryas olfersii Snake Venom in Mice. Toxicon2017, 132, 9–17, doi:10.1016/j.toxicon.2017.03.013.
  51. Silva, K.V.; Said, R. do C.; Assy, J.G.P.L.; Duarte, M.R.; Torrez, P.P.Q.; França, F.O. de S. A Case of Envenomation Caused by Oxybelis fulgidus (Serpentes, Colubridae) in Brazilian Amazon. Rev. Soc. Bras. Med. Trop.2019, 52, doi:10.1590/0037-8682-0426-2018.
  52. Hofmann, E.P.; Rautsaw, R.M.; Mason, A.J.; Strickland, J.L.; Parkinson, C.L. Duvernoy’s Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes. Toxins 2021, 13, 336, doi:10.3390/TOXINS13050336.
  53. Ching, A.T.C.; Paes Leme, A.F.; Zelanis, A.; Rocha, M.M.T.; Furtado, M.D.F.D.; Silva, D.A.; Trugilho, M.R.O.; Da Rocha, S.L.G.; Perales, J.; Ho, P.L.; et al. Venomics Profiling of Thamnodynastes strigatus Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes. J. Proteome Res.2012, 11, 1152–1162, doi:10.1021/pr200876c.
  54. Ching, A.T.C.; Rocha, M.M.T.; Paes Leme, A.F.; Pimenta, D.C.; de Fátima D. Furtado, M.; Serrano, S.M.T.; Ho, P.L.; Junqueira-de-Azevedo, I.L.M. Some Aspects of the Venom Proteome of the Colubridae Snake Philodryas olfersii Revealed from a Duvernoy’s (Venom) Gland Transcriptome. FEBS Lett.2006, 580, 4417–4422, doi:10.1016/J.FEBSLET.2006.07.010.
  55. Calvete, J.J.; Bonilla, F.; Granados-Martínez, S.; Sanz, L.; Lomonte, B.; Sasa, M. Venomics of the Duvernoy’s Gland Secretion of the False Coral Snake Rhinobothryum bovallii (Andersson, 1916) and Assessment of Venom Lethality towards Synapsid and Diapsid Animal Models. J. Proteomics2020, 225, 103882, doi:10.1016/J.JPROT.2020.103882.
  56. Torres-Bonilla, K.A.; Floriano, R.S.; Schezaro-Ramos, R.; Rodrigues-Simioni, L.; da Cruz-Höfling, M.A. A Survey on Some Biochemical and Pharmacological Activities of Venom from Two Colombian Colubrid Snakes, Erythrolamprus bizona (Double-Banded Coral Snake Mimic) and Pseudoboa Neuwiedii (Neuwied’s False Boa). Toxicon2017, 131, 29–36, doi:10.1016/J.TOXICON.2017.02.030.
  57. Domínguez-Pérez, D.; Durban, J.; Agüero-Chapin, G.; López, J.T.; Molina-Ruiz, R.; Almeida, D.; Calvete, J.J.; Vasconcelos, V.; Antunes, A. The Harderian Gland Transcriptomes of Caraiba Andreae, Cubophis Cantherigerus and Tretanorhinus variabilis, Three Colubroid Snakes from Cuba. Genomics2019, 111, 1720–1727, doi:10.1016/J.YGENO.2018.11.026.
  58. Modahl, C.M.; Frietze, S.; Mackessy, S.P. Transcriptome-Facilitated Proteomic Characterization of Rear-Fanged Snake Venoms Reveal Abundant Metalloproteinases with Enhanced Activity. J. Proteomics2018, 187, 223–234, doi:10.1016/j.jprot.2018.08.004.
  59. Pla, D.; Petras, D.; Saviola, A.J.; Modahl, C.M.; Sanz, L.; Pérez, A.; Juárez, E.; Frietze, S.; Dorrestein, P.C.; Mackessy, S.P.; et al. Transcriptomics-Guided Bottom-up and Top-down Venomics of Neonate and Adult Specimens of the Arboreal Rear-Fanged Brown Treesnake, Boiga irregularis, from Guam. J. Proteomics2018, 174, 71–84, doi:10.1016/J.JPROT.2017.12.020.
  60. Heyborne, W.H.; Mackessy, S.P. Venoms of New World Vinesnakes (Oxybelis aeneus and O. fulgidus). Toxicon2021, 190, 22–30, doi:10.1016/J.TOXICON.2020.12.002.
  61. Pla, D.; Sanz, L.; Whiteley, G.; Wagstaff, S.C.; Harrison, R.A.; Casewell, N.R.; Calvete, J.J. What Killed Karl Patterson Schmidt? Combined Venom Gland Transcriptomic, Venomic and Antivenomic Analysis of the South African Green Tree Snake (the Boomslang), Dispholidus typus. Biochim. Biophys. Acta - Gen. Subj.2017, 1861, 814–823, doi:10.1016/J.BBAGEN.2017.01.020.
  62. Kini, R.M.; Doley, R. Structure, Function and Evolution of Three-Finger Toxins: Mini Proteins with Multiple Targets. Toxicon2010, 56, 855–867.
  63. Modahl, C.M.; Mrinalini; Frietze, S.; Mackessy, S.P. Adaptive Evolution of Distinct Prey-Specific Toxin Genes in Rear-Fanged Snake Venom. Proc. R. Soc. B2018, 285, doi:10.1098/RSPB.2018.1003.
  64. Yamazaki, Y.; Morita, T. Structure and Function of Snake Venom Cysteine-Rich Secretory Proteins. Toxicon2004, 44, 227–231, doi:10.1016/J.TOXICON.2004.05.023.
  65. Tadokoro, T.; Modahl, C.M.; Maenaka, K.; Aoki-Shioi, N. Cysteine-Rich Secretory Proteins (CRISPs) from Venomous Snakes: An Overview of the Functional Diversity in a Large and Underappreciated Superfamily. Toxins 2020, 12, 175, doi:10.3390/TOXINS12030175.
  66. Lu, Q.; Navdaev, A.; Clemetson, J.M.; Clemetson, K.J. Snake Venom C-Type Lectins Interacting with Platelet Receptors. Structure–Function Relationships and Effects on Haemostasis. Toxicon2005, 45, 1089–1098, doi:10.1016/J.TOXICON.2005.02.022.
  67. Rehorek, S.J. Squamate Harderian Gland: An Overview. Anat. Rec.1997, 248, 301–306, doi:10.1002/(SICI)1097-0185(199707)248:3<301::AID-AR1>3.0.CO;2-S.
  68. McDowell, S.B. Toxicocalamus, a New Guinea Genus of Snakes of the Family Elapidae. J. Zool.1969, 159, 443–511, doi:10.1111/J.1469-7998.1969.TB03900.X.
  69. Da Rocha, M.M.T.; Furtado, M.D.F.D. Analysis of Biological Activities from Philodryas olfersii (Lichtenstein) and P. patagoniensis (Girard) Venoms (Serpents, Colubridae). Rev. Bras. Zool.2007, 24, 410–418, doi:10.5380/rbz.v24i2.8468.
  70. Pérez, O.A. De; Vila, L.L. De; Peichoto, M.E.; Maruñak, S.; Ruiz, R.; Teibler, P.; Gay, C.; Rey, L. Edematogenic and Myotoxic Activities of the Duvernoy ’ s Gland Secretion of Philodryas olfersii from the North-East Region Of. World Health2003, 27, 363–370.
  71. Lemoine, K.; Salgueiro, L.M.; Rodríguez-Acosta, A.; Acosta, J.A. Neurotoxic, Hemorrhagic and Proteolytic Activities of Duvernoy’s Gland Secretion from Venezuelan Opisthoglyphous Colubrid Snakes in Mice. Vet. Hum. Toxicol.2004, 46, 10–14.
  72. Estrella, A.; Sánchez, E.E.; Galán, J.A.; Tao, W.A.; Guerrero, B.; Navarrete, L.F.; Rodríguez-Acosta, A. Characterization of Toxins from the Broad-Banded Water Snake Helicops angulatus (Linnaeus, 1758): Isolation of a Cysteine-Rich Secretory Protein, Helicopsin. Arch. Toxicol.2011, 85, 305–313, doi:10.1007/s00204-010-0597-6.
  73. Cerda, P. A., Crowe-Riddell, J. M., Gonçalves, D. J., Larson, D. A., Duda Jr, T. F., & Davis Rabosky, A. R. (2022). Divergent specialization of simple venom gene profiles among rear-fanged snake genera (Helicops and Leptodeira, Dipsadinae, Colubridae). Toxins, 14(7), 489.
  74. Six, D.A.; Dennis, E.A. The Expanding Superfamily of Phospholipase A2 Enzymes: Classification and Characterization. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids2000, 1488, 1–19, doi:10.1016/S1388-1981(00)00105-0.
  75. Campos, P.F.; Andrade-Silva, D.; Zelanis, A.; Leme, A.F.P.; Rocha, M.M.T.; Menezes, M.C.; Serrano, S.M.T.; Junqueira-De-Azevedo, I.D.L.M. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi. Genome Biol. Evol.2016, 8, 2266–2287, doi:10.1093/gbe/evw149.
  76. Brust, A.; Sunagar, K.; Undheim, E.A.B.; Vetter, I.; Yang, D.C.; Casewell, N.R.; Jackson, T.N.W.; Koludarov, I.; Alewood, P.F.; Hodgson, W.C.; et al. Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Mol. Cell. Proteomics2013, 12, 651–663, doi:10.1074/mcp.M112.023135.
  77. Casewell, N.R.; Wagstaff, S.C.; Harrison, R.A.; Renjifo, C.; Wüster, W. Domain Loss Facilitates Accelerated Evolution and Neofunctionalization of Duplicate Snake Venom Metalloproteinase Toxin Genes. Mol. Biol. Evol.2011, 28, 2637–2649, doi:10.1093/molbev/msr091.
  78. Sanz, L.; Calvete, J.J. Insights into the Evolution of a Snake Venom Multi-Gene Family from the Genomic Organization of Echis ocellatus SVMP Genes. Toxins (Basel).2016, 8, doi:10.3390/toxins8070216.
  79. Sanz, L.; Harrison, R.A.; Calvete, J.J. First Draft of the Genomic Organization of a PIII-SVMP Gene. Toxicon2012, 60, 455–469, doi:10.1016/j.toxicon.2012.04.331.
  80. Cidade, D.A.P.; Simão, T.A.; Dávila, A.M.R.; Wagner, G.; de L.M. Junqueira-de-Azevedo, I.; Lee Ho, P.; Bon, C.; Zingali, R.B.; Albano, R.M. Bothrops jararaca Venom Gland Transcriptome: Analysis of the Gene Expression Pattern. Toxicon2006, 48, 437–461, doi:10.1016/J.TOXICON.2006.07.008.
  81. Corrêa-Netto, C.; Junqueira-de-Azevedo, I. de L.M.; Silva, D.A.; Ho, P.L.; Leitão-de-Araújo, M.; Alves, M.L.M.; Sanz, L.; Foguel, D.; Zingali, R.B.; Calvete, J.J. Snake Venomics and Venom Gland Transcriptomic Analysis of Brazilian Coral Snakes, Micrurus altirostris and M. corallinus. J. Proteomics2011, 74, 1795–1809, doi:10.1016/J.JPROT.2011.04.003.
  82. Tasoulis, T.; Lee, M.S.Y.; Ziajko, M.; Dunstan, N.; Sumner, J.; Isbister, G.K. Activity of Two Key Toxin Groups in Australian Elapid Venoms Show a Strong Correlation to Phylogeny but Not to Diet. BMC Evol. Biol.2020, 20, 1–13, doi:10.1186/S12862-020-1578-X/FIGURES/7.
  83. True, J.R.; Carroll, S.B. Gene Co-Option in Physiological and Morphological Evolution. Annu. Rev. Cell Dev. Biol.2002, 18, 53–80, doi:10.1146/annurev.cellbio.18.020402.140619.
  84. Weinstein, S.A.; White, J.; Keyler, D.E.; Warrell, D.A. Non-Front-Fanged Colubroid Snakes: A Current Evidence-Based Analysis of Medical Significance. Toxicon2013, 69, 103–113, doi:10.1016/J.TOXICON.2013.02.003.
  85. Ribeiro, L.A.; Puorto, G.; Jorge, M.T. Bites by the Colubrid Snake Philodryas olfersii: A Clinical and Epidemiological Study of 43 Cases. Toxicon1999, 37, 943–948, doi:10.1016/S0041-0101(98)00191-3.
  86. Sevilla-Sánchez, M.J.; Ayerbe-González, S.; Bolaños-Bolaños, E. Aspectos Biomédicos y Epidemiológicos Del Accidente Ofídico En El Departamento Del Cauca, Colombia, 2009-2018. Biomédica2021, 41, 314–337, doi:10.7705/BIOMEDICA.5853.
  87. De Silva, H.A.; Ryan, N.M.; De Silva, H.J. Adverse Reactions to Snake Antivenom, and Their Prevention and Treatment. Br. J. Clin. Pharmacol.2016, 81, 446–452, doi:10.1111/BCP.12739.
  88. Koh, C.Y.; Kini, R.M. From Snake Venom Toxins to Therapeutics - Cardiovascular Examples. Toxicon2012, 59, 497–506, doi:10.1016/j.toxicon.2011.03.017.
  89. Pal, S.K.; Gomes, A.A.; Dasgupta, S.C.; Gomes, A.A. Snake Venom as Therapeutic Agents: From Toxin to Drug Development. IJEB Vol.40(12) [December 2002]2002.
  90. Fox, J.; Serrano, S. Approaching the Golden Age of Natural Product Pharmaceuticals from Venom Libraries: An Overview of Toxins and Toxin-Derivatives Currently Involved in Therapeutic or Diagnostic Applications. Curr. Pharm. Des.2007, 13, 2927–2934, doi:10.2174/138161207782023739.
  91. Barua, A.; Mikheyev, A.S. Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations. Mol. Biol. Evol.2019, 36, 1964–1974, doi:10.1093/molbev/msz125.
  92. J., A.; Ohno, S. Evolution by Gene Duplication. Popul. (French Ed.1971, 26, 1176, doi:10.2307/1530208.
  93. Vonk, F.J.; Casewell, N.R.; Henkel, C. V.; Heimberg, A.M.; Jansen, H.J.; McCleary, R.J.R.; Kerkkamp, H.M.E.; Vos, R.A.; Guerreiro, I.; Calvete, J.J.; et al. The King Cobra Genome Reveals Dynamic Gene Evolution and Adaptation in the Snake Venom System. Proc. Natl. Acad. Sci. U. S. A.2013, 110, 20651–20656, doi:10.1073/pnas.1314702110.
  94. Bazaa, A.; Juárez, P.; Marrakchi, N.; Lasfer, Z.B.; Ayeb, M. El; Harrison, R.A.; Calvete, J.J.; Sanz, L. Loss of Introns along the Evolutionary Diversification Pathway of Snake Venom Disintegrins Evidenced by Sequence Analysis of Genomic DNA from Macrovipera lebetina Transmediterranea and Echis ocellatus. J. Mol. Evol.2007, 64, 261–271, doi:10.1007/s00239-006-0161-4.
  95. Stenseth, N.C. Where Have All the Species Gone? On the Nature of Extinction and the Red Queen Hypothesis. Oikos1979, 33, 196, doi:10.2307/3543998.
  96. Kerfoot, W.C.; Weider, L.J. Experimental Paleoecology (Resurrection Ecology): Chasing Van Valen’s Red Queen Hypothesis. Limnol. Oceanogr.2004, 49, 1300–1316, doi:10.4319/lo.2004.49.4_part_2.1300.
  97. Holding, M.L.; Drabeck, D.H.; Jansa, S.A.; Gibbs, H.L. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integr. Comp. Biol, 2016; 56, 1032–1043, doi: 10.1093/icb/icw082.
  98. Voss, R.S.; Jansa, S.A. Snake-Venom Resistance as a Mammalian Trophic Adaptation: Lessons from Didelphis marsupialis. Biol. Rev.2012, 87, 822–837, doi:10.1111/j.1469-185X.2012.00222.x.
  99. Khan, M.A.; Dashevsky, D.; Kerkkamp, H.; Kordiš, D.; de Bakker, M.A.G.; Wouters, R.; van Thiel, J.; op den Brouw, B.; Vonk, F.; Manjunatha Kini, R.; et al. Widespread Evolution of Molecular Resistance to Snake Venom α-Neurotoxins in Vertebrates. Toxins 2020, 12, 638, doi:10.3390/TOXINS12100638.
  100. Gan, Z.R.; Gould, R.J.; Jacobs, J.W.; Friedman, P.A.; Polokoff, M.A. Echistatin. A Potent Platelet Aggregation Inhibitor from the Venom of the Viper, Echis carinatus. J. Biol. Chem.1988, 263, 19827–19832, doi:10.1016/s0021-9258(19)77710-2.
  101. Markland, F.S. Snake Venoms and the Hemostatic System. Toxicon1998, 36, 1749–1800, doi:10.1016/S0041-0101(98)00126-3.
  102. Scarborough, R.M.; Rose, J.W.; Naughton, M.A.; Phillips, D.R.; Nannizzi, L.; Arfsten, A.; Campbell, A.M.; Charo, I.F. Characterization of the Integrin Specificities of Disintegrins Isolated from American Pit Viper Venoms. J. Biol. Chem.1993, 268, 1058–1065, doi:10.1016/s0021-9258(18)54041-2.
  103. Saviola, A.J.; Peichoto, M.E.; Mackessy, S.P. Rear-Fanged Snake Venoms: An Untapped Source of Novel Compounds and Potential Drug Leads. Toxin Rev.2014, 33, 185–201, doi:10.3109/15569543.2014.942040.
  104. Badari, J.C.; Díaz-Roa, A.; Teixeira Rocha, M.M.; Mendonça, R.Z.; Silva Junior, P.I. da Patagonin-CRiSP: Antimicrobial Activity and Source of Antimicrobial Molecules in Duvernoy’s Gland Secretion (Philodryas Patagoniensis Snake). Front. Pharmacol.2021, 11, 2374, doi:10.3389/FPHAR.2020.586705/BIBTEX.
  105. Peichoto, M.E.; Mackessy, S.P.; Teibler, P.; Tavares, F.L.; Burckhardt, P.L.; Breno, M.C.; Acosta, O.; Santoro, M.L. Purification and Characterization of a Cysteine-Rich Secretory Protein from Philodryas patagoniensis Snake Venom. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.2009, 150, 79–84, doi:10.1016/J.CBPC.2009.03.002.
  106. Angarita-Sierra, T.; Montañez-Méndez, A.; Toro-Sánchez, T.; Rodriguez-Vargas, A. A Case of Envenomation by the False Fer-de-Lance Snake Leptodeira annulata (Linnaeus, 1758) in the Guajira Department, Colombia. Biomédica2020, 40,20-26. doi: 10.7705/biomedica.4773.
  107. Angarita-Corzo, K.; García-Peluffo, J.D.; Franco-Gutiérrez, M. Case Report of Human Envenomation by a False Coralsnake, Erythrolamprus bizona Jan, 1863. Herpetol. Notes2023, 16, 627–631.
  108. Barrio-Amorós, C.L. On the Taxonomy of Snakes in the Genus Leptodeira, with an Emphasis on Costa Rican Species. Reptil. Amphib.2019, 26, 1–15, doi:10.17161/RANDA.V26I1.14321.
  109. Gorzula, S. Leptodeira annulata ashmedeadii Envenomation. Herpetol. Rev.1982, 13, 47.
  110. Rodríguez-González, L.A.; Portillo-Portillo, P.A. Evaluación de La Actividad Neurotóxica de La Secreción Salival de Erythrolamprus bizona y Leptophis ahaetulla Serpientes Opistoglifas En Nervio Ciático de Bufo Marinus, Universidad del Quindío, 2006.
  111. Heyborne, W.H.; Mackessy, S.P. Identification and Characterization of a Taxon-Specific Three-Finger Toxin from the Venom of the Green Vinesnake (Oxybelis fulgidus; Family Colubridae). Biochimie2013, 95, 1923–1932, doi:10.1016/J.BIOCHI.2013.06.025.
  112. Crimmins, M.L. A Case of Oxybelis Poisoning in Man. Copeia1937, 1937, 233, doi:10.2307/1436270.
  113. Babo Martins, S.; Bolon, I.; Chappuis, F.; Ray, N.; Alcoba, G.; Ochoa, C.; Kumar Sharma, S.; Nkwescheu, A.S.; Wanda, F.; Durso, A.M.; et al. Snakebite and Its Impact in Rural Communities: The Need for a One Health Approach. PLoS Negl. Trop. Dis.2019, 13, e0007608, doi:10.1371/journal.pntd.0007608.
  114. Lette-Pinto, R.N.; Da Silva, N.J.; Aird, S.D. Human envenomation by the South American opisthoglyph Clelia clelia plumbea (Wied). Toxicon1991, 29, 1512–1516, doi:https://doi.org/10.1016/0041-0101(91)90008-f.
  115. de Araújo, M.E.; dos Santos, A.C.M.C.A. Cases of Human Envenoming Caused by Philodryas olfersii and Philodryas patagoniensis (Serpentes: Colubridae). Rev. Soc. Bras. Med. Trop.1997, 30, 517–519, doi:10.1590/S0037-86821997000600013.
  116. Fowler, I.R.; Salomão, M. da G. Activity Patterns in the Colubrid Snake Genus Philodryas and Their Relationship to Reproduction and Snakebite. Bull. Chicago Herpetol. Soc.1994, 29, 229–232.
  117. Prado-Franceschi, J.; Hyslop, S. South American colubrid envenomations. http://dx.doi.org/10.1081/TXR-1200047442002, 21, 117–158, doi:10.1081/TXR-120004744.
  118. Salomao, M.A.; Pinto-Albolea, A.B.; Almeida-Santos, S.M. Colubrid Snakebite: A Public Health Problem in Brazil. Herpetol. Rev.2003, 34, 307–312.
  119. Mandelbaum, F.R.; Reichl, A.P.; Assakura, M.T.; Serrano, S.M.T. Philodryas Venom Metalloproteinases. Handb. Proteolytic Enzym. Second Ed.2004, 1, 701–702, doi:10.1016/B978-0-12-079611-3.50210-X.
  120. Peichoto, M.E.; Teibler, P.; Mackessy, S.P.; Leiva, L.; Acosta, O.; Gonçalves, L.R.C.; Tanaka-Azevedo, A.M.; Santoro, M.L. Purification and Characterization of Patagonfibrase, a Metalloproteinase Showing α-Fibrinogenolytic and Hemorrhagic Activities, from Philodryas patagoniensis Snake Venom. Biochim. Biophys. Acta - Gen. Subj.2007, 1770, 810–819, doi:10.1016/J.BBAGEN.2006.12.014.
  121. Acosta de Pérez, O.; Leiva de Vila, L.; Peichoto, M.; Maruñak, S.L.; Ruíz, R.; Teibler, P.; Gay, C.; Rey, L. Edematogenic and Myotoxic Activities of the Duvernoy ’ s Gland Secretion of Philodryas olfersii from the North-East Region Of. BIOCELL2003, 27, 363–370.
  122. Assakura, M.T.; Reichl, A.P.; Mandelbaum, F.R. Isolation and Characterization of Five Fibrin(Ogen) Olytic Enzymes from the Venom of Philodryas olfersii (Green Snake). Toxicon1994, 32, 819–831, doi:10.1016/0041-0101(94)90007-8.
  123. Assakura, M.T.; Salomão, M. da G.; Puorto, G.; Mandelbaum, F.R. Hemorrhagic, Fibrinogenolytic and Edema-Forming Activities of the Venom of the Colubrid Snake Philodryas olfersii (Green Snake). Toxicon1992, 30, 427–438, doi:10.1016/0041-0101(92)90539-H.
  124. Prado-Franceschi, J.; Hyslop, S.; Cogo, J.C.; Andrade, A.L.; Assakura, M.; Cruz-Höfling, M.A.; Rodrigues-Simioni, L. The Effects of Duvernoy’s Gland Secretion from the Xenodontine Colubrid Philodryas olfersii on Striated Muscle and the Neuromuscular Junction: Partial Characterization of a Neuromuscular Fraction. Toxicon1996, 34, 459–466, doi:10.1016/0041-0101(95)00146-8.
  125. Prado-Franceschi, J.; Hyslop, S.; Cogo, J.C.; Andrade, A.L.; Assakura, M.T.; Reichl, A.P.; Cruz-Höfling, M.A.; Rodrigues-Simioni, L. Characterization of a Myotoxin from the Duvernoy’s Gland Secretion of the Xenodontine Colubrid Philodryas olfersii (Green Snake): Effects on Striated Muscle and the Neuromuscular Junction. Toxicon1998, 36, 1407–1421, doi:10.1016/S0041-0101(98)00075-0.
  126. Assakura, M.T.; Reichl, A.P.; Mandelbaum, F.R. Isolation and Characterization of Five Fibrin(Ogen)Olytic Enzymes from the Venom of Philodryas olfersii (Green Snake). Toxicon1994, 32, 819–831, doi:10.1016/0041-0101(94)90007-8.
  127. Peichoto, M.E.; Tavares, F.L.; Santoro, M.L.; MacKessy, S.P. Venom Proteomes of South and North American Opisthoglyphous (Colubridae and Dipsadidae) Snake Species: A Preliminary Approach to Understanding Their Biological Roles. Comp. Biochem. Physiol. Part D Genomics Proteomics2012, 7, 361–369, doi:10.1016/J.CBD.2012.08.001.
  128. Oliveira, J.S.; Sant’Anna, L.B.; Oliveira Junior, M.C.; Souza, P.R.M.; Andrade Souza, A.S.; Ribeiro, W.; Vieira, R.P.; Hyslop, S.; Cogo, J.C. Local and Hematological Alterations Induced by Philodryas olfersii Snake Venom in Mice. Toxicon2017, 132, 9–17, doi:10.1016/J.TOXICON.2017.03.013.
  129. Torres-Bonilla, K.A.; Andrade-Silva, D.; Serrano, S.M.T.; Hyslop, S. Biochemical Characterization of Venom from Pseudoboa neuwiedii (Neuwied’s False Boa; Xenodontinae; Pseudoboini). Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol.2018, 213, 27–38, doi:10.1016/j.cbpc.2018.06.003.
  130. Lemoine, K.; Girón, M.E.; Aguilar, I.; Navarrete, L.F.; Rodríguez-Acosta, A. Proteolytic, Hemorrhagic, and Neurotoxic Activities Caused by Leptodeira annulata ashmeadii (Serpentes: Colubridae) Duvernoy’s Gland Secretion. Wilderness Environ. Med.2004, 15, 82–89, doi:10.1580/1080-6032(2004)015[0082:PHANAC]2.0.CO;2.
  131. Diaz, F.; Navarrete, L.F.; Pefaur, J.; Rodriguez-Acosta, A. Envenomation by Neotropical Opistoglyphous Colubrid Thamnodynastes cf. pallidus Linné, 1758 (Serpentes:Colubridae) in Venezuela. Rev. Inst. Med. Trop. Sao Paulo2004, 46, 287–290, doi:10.1590/S0036-46652004000500011.
  132. Ching, A.T.C.; Leme, A.F.P.; Zelanis, A.; Rocha, M.M.T.; Furtado, M. de F.D.; Silva, D.A.; Trugilho, M.R.O.; da Rocha, S.L.G.; Perales, J.; Ho, P.L.; et al. Venomics Profiling of Thamnodynastes strigatus Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes. J. Proteome Res.2012, 11, 1152–1162, doi:10.1021/PR200876C.
  133. Walls Gordon L. (Gordon Lynn) The Vertebrate Eye and Its Adaptive Radiation; Bloomfield Hills, Mich.,Cranbrook Institute of Science, 1942;
  134. Bhaumik, S.; Jagadesh, S.; Lassi, Z. Quality of WHO Guidelines on Snakebite: The Neglect Continues. BMJ Glob. Heal.2018, 3, doi:10.1136/bmjgh-2018-000783.
  135. Organization, W.H. Snakebite Envenoming: A Strategy for Prevention and Control: Executive Summary; World Health Organization, 2019;
  136. Lynch, J.D. El Contexto de las Serpientes de Colombia Con Un Análisis De Las Amenazas En Contra De Su Conservación. Rev. Colomb. Cienc., 2012, 36 (140), 435-449.
  137. Lynch, J.D.; Angarita, T.; Ruiz, F.J. Programa Nacional Para La Conservación de Las Serpientes Presentes En Colombia; Ministerio de Ambiente y Desarrollo Sostenible, 2014.
  138. Revell, L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things). Methods Ecol. Evol.2012, 3, 217–223, doi:10.1111/j.2041-210X.2011.00169.x.
  139. Guisande-González, C. Plots with R: Package ‘ PlotsR ’ 2020, 368.
  140. Guisande-Gonzáles, C.; Vaamonde-Liste, B.; Barreiro-Felpeto, A. Rwizard 2014, 1–452.​

Descargas


bg
Copyright: © 2024 por los autores. Publicación de acceso abierto bajo los términos y condiciones de la licencia Creative Commons Attribution ( CC BY-NC-ND 4.0 )

Compartir




Fichas de especies

¿Cómo reconócerlas?