arrow-forward Mordeduras, venenos y serpientes venenosas de Colombia

Capítulo 2
Linajes, variabilidad del veneno y señales de advertencia en las serpientes coral del Nuevo Mundo

​​​​​​​​​​​​​​​​​​​​​​​​​Por: ​Juan David Bayona-Serrano, Chris Akcali, Juan Pablo Hurtado-Gómez, Teddy Angarita-Sierra

Palabras Clave: Elapidae, Toxinas de tres dedos, Veneno, Evolución, Aposematismo.​

  • book-open 31 Paginas
  • time 2 Horas de lectura​

DOI: 10.33610/766309uzpmic​​


Las serpientes coral del género Micrurus son el grupo de elápidos más diverso de América. Sus potentes venenos neurotóxicos han sido ampliamente estudiados, y varias de sus toxinas, particularmente las que presentan actividad neurotóxica, han sido caracterizadas. No obstante, el conocimiento en torno a la composición y variabilidad de las toxinas de sus venenos es aún fragmentario y pobremente conocido para la mayoría de las especies del género. En este capítulo analizamos la información disponible sobre los venenos de las serpientes coral, mostrando que, a la fecha, no se comprende con claridad los factores que impulsan su variabilidad inter e intraespecífica. En consecuencia, para futuros estudios se recomienda tomar una amplia muestra de venenos del mayor número de especies posible y cobertura geográfica, con miras a incrementar la representatividad, así como la detección de compuestos y propiedades únicas. Las corales también son conocidas por su patrón de anillos de colores brillantes, los cuales por más de 100 años se ha asumido que funcionan como señales de advertencia de su toxicidad y peligro (aposematismo), para las aves y mamíferos que las predan. Sin embargo, trabajos recientes sugieren que la hipótesis del aposematismo presenta serios problemas y limitaciones a la hora de explicar con robustez el patrón de coloración de estas serpientes. Aquí discutimos la evidencia a favor y en contra de esta hipótesis desde la perspectiva de un herpetólogo de campo, considerando hipótesis alternativas acerca de la función defensiva de los patrones de anillos de colores brillantes de estas serpientes.​

  1. Uetz, P. The Original Descriptions of Reptiles. Zootaxa2010, 59–68, doi:10.11646/zootaxa.2334.1.3.
  2. Mackessy, S.P. Handbook of Venoms and Toxins of Reptiles.; 1st ed.; CRC Press: Boca Raton, 2021.
  3. Zaher, H.; Murphy, R.W.; Arredondo, J.C.; Graboski, R.; Machado-Filho, P.R.; Mahlow, K.; Montingelli, G.G.; Quadros, A.B.; Orlov, N.L.; Wilkinson, M.; et al. Large-Scale Molecular Phylogeny, Morphology, Divergence-Time Estimation, and the Fossil Record of Advanced Caenophidian Snakes (Squamata: Serpentes); PloS ONE2019; 14(5): e0217959. https://doi.org/10.1371/journal.pone.0217959.
  4. Tanaka, G.D.; Furtado, M.D.F.D.; Portaro, F.C.V.; Sant’Anna, O.A.; Tambourgi, D. V. Diversity of Micrurus Snake Species Related to Their Venom Toxic Effects and the Prospective of Antivenom Neutralization. PLoS Negl Trop Dis2010, 4, e622, doi:10.1371/JOURNAL.PNTD.0000622.
  5. Silva Jr., N.J. As Cobras-Corais Do Brasil: Biologia, Taxonomia, Venenos, Envenenamentos. 2016, pp: 451.
  6. Roze, J.A. Coralsnakes of the Americas: Biology, Identification, and Venoms. Coralsnakes of the Americas: biology, identification, and venoms.Krieger Publishing Company: Malabar 1996, 328pp.
  7. Bucaretchi, F.; Capitani, E.M. De; Vieira, R.J.; Rodrigues, C.K.; Zannin, M.; Jr, N.J.D.S.; Casais-e-Silva, L.L.; Hyslop, S. Coral Snake Bites (Micrurus Spp.) in Brazil: A Review of Literature Reports. https://doi.org/10.3109/15563650.2015.11353372016, 54, 222–234, doi:10.3109/15563650.2015.1135337.
  8. Campbell, J.A.; Lamar, W.W.; Brodie, E.D.; others The Venomous Reptiles of the Western Hemisphere; Comstock Pub. Associates Ithaca [NY], 2004; Vol. 1.
  9. Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus Coralsnakes: Evolutionary Trends in Compositional Patterns Emerging from Proteomic Analyses. Toxicon2016, 122, 7–25.
  10. Bucaretchi, F.; De Capitani, E.M.; Vieira, R.J.; Rodrigues, C.K.; Zannin, M.; Da Silva, N.J.; Casais-E-Silva, L.L.; Hyslop, S. Coral Snake Bites (Micrurus spp.) in Brazil: A Review of Literature Reports. Clin Toxicol (Phila)2016, 54, 222–234, doi:10.3109/15563650.2015.1135337.
  11. Sanz, L.; Pla, D.; Pérez, A.; Rodríguez, Y.; Zavaleta, A.; Salas, M.; Lomonte, B.; Calvete, J.J. Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA2 Dichotomy across Micrurus Venoms. Toxins 2016, Vol. 8, Page 1782016, 8, 178, doi:10.3390/TOXINS8060178.
  12. Sanz, L.; Quesada-Bernat, S.; Ramos, T.; Casais-e-Silva, L.L.; Corrêa-Netto, C.; Silva-Haad, J.J.; Sasa, M.; Lomonte, B.; Calvete, J.J. New Insights into the Phylogeographic Distribution of the 3FTx/PLA2 Venom Dichotomy across Genus Micrurus in South America. J Proteomics2019, 200, 90–101, doi:10.1016/J.JPROT.2019.03.014.
  13. Hurtado-Gómez, J.; Vargas-Ramírez, M.; Ruiz-Gómez, Fouquet, A.; Fritz. U. Multilocus phylogeny clarifies relationships and diversity within the Micrurus lemniscatus complex (Serpentes: Elapidae). Salamandra 2021, 57, 229-239.
  14. Jowers, M.J.; Smart, U.; Sánchez-Ramírez, S.; Murphy, J.C.; Gómez, A.; Bosque, R.J.; Sarker, G.C.; Noonan, B.P.; Faria, J.F.; Harris, D.J.; et al. Unveiling Underestimated Species Diversity within the Central American Coralsnake, a Medically Important Complex of Venomous Taxa. Sci Rep2023, 13, doi:10.1038/S41598-023-37734-5.
  15. Zaher, H.; Grazziotin, F.G.; Prudente, A.L. da C.; Quadros, A.B.A.; Trevine, V.C.; Silva, Jr., N.J. Origin and Evolution of Elapids and New World Coralsnakes. In Advances in coralsnake biology: With emphasis on south america; Silva, Jr., N.J., Porras, L.W., Aird, S.D., Prudente, A.L. da C., Eds.; Eagle Mountain Publishing: Goiás, 2021; pp. 97–113.
  16. Silva, Jr., N.J.; Buononato, Marcus, A.; Pires, M.G.; Feitosa, D.T. New World Coralsnakes: An Overview. In Advances in coralsnake biology: With emphasis on south america; Silva, Jr.N.J., Porras, L.W., Aird, S.D., Prudente, A.L. da C., Eds.; Eagle Mountain Publishing: Goiás, 2021; pp. 115–139.
  17. Reyes-Velasco, J.; Adams, R.H.; Boissinot, S.; Parkinson, C.L.; Campbell, J.A.; Castoe, T.A.; Smith, E.N. Genome-Wide SNPs Clarify Lineage Diversity Confused by Coloration in Coralsnakes of the Micrurus diastema Species Complex (Serpentes: Elapidae). Mol Phylogenet Evol2020, 147, 106770, doi:10.1016/J.YMPEV.2020.106770.
  18. Wallace, A.R. Mimicry and other protective resemblances among animals. Alfred Russel Wallace Classic Writings 1867, 8, 1–27.
  19. Jowers, M.J.; Garcia Mudarra, J.L.; Charles, S.P.; Murphy, J.C. Phylogeography of West Indies Coralsnakes (Micrurus): Island Colonisation and Banding Patterns. Zool Scr2019, 48, 263–276, doi:10.1111/ZSC.12346.
  20. Nascimento, L.R.S.; Graboski, R.; Silva J.R., N.J.; Prudente, A.L.C. Integrative taxonomy of Micrurus ibiboboca (Merrem, 1820) (Serpentes, Elapidae) reveals three new species of coral snake. Systematics and Biodiversity2024, 22(1). https://doi.org/10.1080/14772000.2024.2315958
  21. Zaher, H.; Grazziotin, F.; Prudente, A.L.C.; Siva Jr, N.J. Origem e Evolução Dos Elapideos e Das Cobras-Corais Do Novo Mundo. As Cobras-corais do Brasil2016, 1, 25–45.
  22. Lee, M.S.Y.; Sanders, K.L.; King, B.; Palci, A. Diversification Rates and Phenotypic Evolution in Venomous Snakes (Elapidae). R Soc Open Sci2015, 3, doi:10.1098/RSOS.150277.
  23. Zaher, H.; Grazziotin, F.G.; Prudente, A.L. da C.; Quadros, A.B.A.; Trevine, V.C.; Silva, Jr., N.J. Origin and Evolution of Elapids and New World Coralsnakes. In Advances in coralsnake biology: With emphasis on south america; Silva, Jr., N.J., Porras, L.W., Aird, S.D., Prudente, A.L. da C., Eds.; Eagle Mountain Publishing: Goiás, 2021; pp. 97–113.
  24. Roze, J.A. Coralsnakes of the Americas: Biology, Identification, and Venoms. Coralsnakes of the Americas: biology, identification, and venoms; Krieger Pub Co, 1996.
  25. Campbell, J.A.; Lamar, W.W.; Brodie, E.D.; others The Venomous Reptiles of the Western Hemisphere; Comstock Pub. Associates Ithaca [NY], 2004; Vol. 2.
  26. Lomonte, B.; Rey-Suárez, P.; Fernández, J.; Sasa, M.; Pla, D.; Vargas, N.; Bénard-Valle, M.; Sanz, L.; Corrêa-Netto, C.; Núñez, V.; et al. Venoms of Micrurus Coralsnakes: Evolutionary Trends in Compositional Patterns Emerging from Proteomic Analyses. Toxicon2016, 122, 7–25, doi:10.1016/J.TOXICON.2016.09.008.
  27. Rodríguez-Vargas, A.; Franco-Vásquez, A.M.; Bolívar-Barbosa, J.A.; Vega, N.; Reyes-Montaño, E.; Arreguín-Espinosa, R.; Carbajal-Saucedo, A.; Angarita-Sierra, T.; Ruiz-Gómez, F. Unveiling the Venom Composition of the Colombian Coralsnakes Micrurus helleri, M. medemi, andM. sangilensis. Toxins (Basel)2023, 15, 622, doi:10.3390/toxins15110622.
  28. Da Silva, N.Jr.; D. Aird, S. Prey Specificity, Comparative Lethality and Compositional Differences of Coral Snake Venoms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology2001, 128, 425–456, doi:10.1016/S1532-0456(00)00215-5.
  29. Almeida et al. In Advances in Coralsnake Biology: With an Emphasis on South America; Silva Jr., N.J., Porras, L.W., Aird, S.D., Prudente, A.L.C., Eds.; Eagle Mountain Publishing, LC: Eagle Mountain, USA, 2021; pp. 291–314. 
  30. Sena II, A.T.; Ruane, S. Concepts and contentions of coral snake resemblance: Batesian mimicry and its alternatives. Biological Journal of the Linnean Society 2022, 135, 631–644, doi:10.1093/biolinnean/blab171.
  31. Mouy, H. The function of red and banded patterns in snakes: A review of hypotheses and evidence, and of the appearance of a similar selective force outside of the Americas. Biological Journal of the Linnean Society 2024, 142, 351–374. doi:10.1093/biolinnean/blad151.
  32. Brodie III, E.D. Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 1993, , doi:10.1111/j.1558-5646.1993.tb01212.x.
  33. Brodie III, E.D.; Janzen, F.J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Functional Ecology 1995, 9, 188–190, doi:10.2307/2390563.
  34. Hinman, K.E.; Throop, H.L.; Adams, K.L.; Dake, A.J.; McLauchlan, K.K.; McKone, M.J. Predation by free-ranging birds on partial coral snake mimics: The importance of ring width and color. Evolution 1997, 51, 1011–1014, doi:10.1111/j.1558-5646.1997.tb03684.x.
  35. Pfennig, D.W.; Harcombe, W.R.; Pfennig, K.S. Frequency-dependent Batesian mimicry. Nature2001, 410, 323, doi:10.1038/35066628.
  36. Buasso, C.M.; Leynaud, G.C.; Cruz, F.B. Predation on snakes of Argentina: Effects of coloration and ring pattern on coral and false coralsnakes. Studies on Neotropical Fauna and Environment2006, 41, 183–188, doi:10.1080/01650520600630725.
  37. Pfennig, D.W.; Harper, G.R. Jr.; Brumo, A.F.; Harcombe, W.R.; Pfennig, K.S. Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology2007, 61, 505–511, doi:10.1007/s00265-006-0278-x.
  38. Kikuchi, D.W.; Pfennig, D.W. Predator cognition permits imperfect coral snake mimicry. The American Naturalist 2010, 176, 830–834, doi:10.1086/657041.
  39. Akcali, C.K.; Perez-Mendoza, H.A.; Kikuchi, D.W.; Pfennig, D.W. Multiple models generate a geographical mosaic of resemblance in a Batesian mimicry complex. Proceedings of the Royal Society B: Biological Sciences2019, 286, 20191519, doi:10.1098/rspb.2019.1519.
  40. Sanches, V.Q.A.; Gomes, C.A.B. Aposematic and cryptic snakes are equally attacked at occidental Amazonian Forest. Herpetology Notes 2019, 12, 1105–1111.
  41. Banci, K.R.S.; Eterovic, A.; Marinho, P.S.; Marques, O.A.V. Being a bright snake: Testing aposematism and mimicry in a neotropical forest. Biotropica 2020, 52, 1229–1241, doi:10.1111/btp.12831.
  42. Wilson, L.; Lonsdale, G.; Curlis, J.D.; Hunter, E.; Cox, C.L. Predator-based selection and the impact of edge sympatry on components of coral snake mimicry. Evolutionary Ecology2022, 36, 135–149, doi:10.21203/rs.3.rs-493560/v1.
  43. Smith, S. Innate recognition of coral snake pattern by a possible avian predator. Science 1975, 187, 759–760, doi:10.1126/science.187.4178.759.
  44. Smith, S. Coral-snake pattern recognition and stimulus generalisation by naive great kiskadees (Aves: Tyrannidae). Nature 1977, 265, 535–536, doi:10.1038/265535a0.
  45. Greene, H.W.; McDiarmid, R. Coral snake mimicry: does it occur? Science 1981, 213, 1207–1212, doi:10.1126/science.213.4513.1207.
  46. Mappes, J.M.; Endler, J. The complex business of survival by aposematism. Trends in Ecology & Evolution2005, 20, 598–603, doi:10.1016/j.tree.2005.07.011.
  47. Bosque, R.J.; Noonan, B.P.; Colli, G.R. Geographical concordance and mimicry between harmless snakes (Colubridae: Oxyrhopus) and harmful models (Elapidae: Micrurus). Global Ecoogy and Biogeography2016, 25, 218–226, doi:10.1111/geb.12401.
  48. Almeida, P.C.; Feitosa, D.T.; Passos, P.; Prudente, A.L.C. Morphological variation and taxonomy of Atractus latifrons (Günther, 1868) (Serpentes: Dipsadidae). Zootaxa2014, 3860, 64–80, doi:10.11646/zootaxa.3860.1.3.
  49. Bosque, R.J.; Hyseni, C.; Santos, M.L.G.; Rangel, E.; Da Silva Dias, C.J.; Hearin, J.B.; Da Silva Jr., N.J.; Bicalho Domingos, F.M.C.; Colli, G.R.; Noonan, B.P. Müllerian mimicry and the coloration patterns of sympatric coralsnakes. Biological Journal of the Linnean Society 2022, 135, 645–651, doi:10.1093/biolinnean/blab155.
  50. Davis Rabosky, A.R.; Cox, C.L.; Rabosky, D.L.; Title, P.O.; Holmes, I.A.; Feldman, A.; McGuire, J.A. Coralsnakes predict the evolution of mimicry across New World snakes. Nature Communications 2016, 7, 1–9, doi:10.1038/ncomms11484.
  51. Strauch, M.A.; Souza, G.J.; Pereira, J.N.; Ramos, T.S.; Cesar, M.O.; Tomaz, M.A.; Monteiro-Machado, M.; Patrão-Neto, F.C.; Melo, P.A. True or false coral snake: is it worth the risk? A Micrurus corallinus case report. Journal of Venomous Animals and Toxins including Tropical Diseases2018, 24, 10, doi:10.1186/s40409-018-0148-9.
  52. Pfennig, D.W.; Mullen, S.P. Mimics without models: causes and consequences of allopatry in Batesian mimicry. Proceedings of the Royal Socieyt of London, Series B2010, 277, 2577–2585, doi:10.1098/rspb.2010.0586.
  53. Beckers, G.J.L., Leenders, T.A.A.M.; Strijbosch, H. Coral snake mimicry: live snakes not avoided by a mammalian predator. Oecologia1996, 106, 461–463.
  54. Muscat, E., de Toledo Moroti, M., Sazima, I., Toledo, L. F., & Rebouças, R. Are plasticine models efficient to test defensive colouration of snakes? Herpetological Journal, 2024,34(2), 75-83, doi: 10.33256/34.2.7583
  55. Smith, N.G. Avian predation of coralsnakes. Copeia1969, 2, 402–404, doi:10.2307/1442098.
  56. Brugger, K.E. Red-tailed hawk dies with coral snake in talons. Copeia1989, 2, 508–510, doi:10.2307/1445456.
  57. DuVal, E.H.; Greene, H.W.; Manno, K.L. Laughing falcon (Herpetotheres cachinnans) predation on coralsnakes (Micrurus nigrocinctus). Biotropica 2006, 38, 566–568, doi:10.1111/j.1744-7429.2006.00162.x.
  58. Gómez-Martínez, M.J.; Gutierrez, A.; DeClerck, F. Four-eyed opossum (Philander opossum) predation on a coral snake (Micrurus nigrocinctus). Mammalia 2008, 72, 350–351, doi:10.1515/MAMM.2008.031.
  59. Costa, H.C.; Lopes, L.E.; Marçal, B.F.; Zorzin, G. The reptile hunter’s menu: A review of the prey species of Laughing Falcons, Herpetotheres cachinnans (Aves: Falconiformes). North-Western Journal of Zoology2014, 10, 445–453.
  60. Knight, R.L.; Erickson, A.W. High incidence of snakes in the diet of nestling red-tailed hawks. Raptor Research 1976, 10, 108–111.
  61. Brodie III, E.D.; Moore, A. Experimental studies of coral snake mimicry: do snakes mimic millipedes? Animal Behaviour 1995, 49, 534–536, doi:10.1006/anbe.1995.0072.
  62. Titcomb, G.C.; Kikuchi, D.W.; Pfennig, D.W. More than mimicry? Evaluating scope for flicker-fusion as a defensive strategy in coral snake mimics. Current Zoology2014, 60, 123–130, doi:10.1093/czoolo/60.1.123.
  63. Brattstrom, B.H. The coral snake ‘mimic’ problem and protective coloration. Evolution1955, 9, 217–219, doi:10.2307/2405591.
  64. Mouy, H. The function of red and banded patterns in snakes: The ophiophagy hypothesis. Biological Journal of the Linnean Society 2024, 142, 452–467. doi:10.1093/biolinnean/blad153.
  65. Kojima, Y.; Ito, R.K.; Fukuyama, I.; Ohkubo, Y.; Durso, A.M. Foraging predicts the evolution of warning coloration and mimicry in snakes. Proc. Natl. Acad. Sci.2024, 121, e2318857121, doi:10.1073/pnas.2318857121.
  66. Mouy, H. The function of red and banded patterns in snakes: The eyes of the beholders. Also, the function of bands in fish. Biological Journal of the Linnean Society 2024,142, 452–46. doi:10.1093/biolinnean/blad154.
  67. Caprette, C. Conquering the cold shudder: the origin and evolution of snake eyes. PhD Thesis 2005,The Ohio State University.
  68. Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High. Nucleic Acids Res.2004, 32, 1792–1797.
  69. Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics2012, 28, 1647–1649.
  70. Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol2020, 37, 1530–1534, doi:10.1093/molbev/msaa015.
  71. Kalyaanamoorthy, S.; Minh, B.Q.; Wong Thomas K F and von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic. Nat. Methods2017, 14, 587–589.
  72. Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol.2018, 35, 518–522.
  73. Paradis, E.; Schliep, K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary in R. Bioinformatics2019, 35, 526–528.
  74. Schliep, K.P. Phangorn: Phylogenetic Analysis in R. Bioinformatics2011, 27, 592–593.
  75. Revell, L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things). Methods Ecol Evol2012, 3, 217–223, doi:10.1111/j.2041-210X.2011.00169.x.
  76. QGIS Development Team QGIS Geographic Information System 2024.
  77. Lippa, E.; Török, F.; Gómez, A.; Corrales, G.; Chacón, D.; Sasa, M.; Gutiérrez, J.M.; Lomonte, B.; Fernández, J. First Look into the Venom of Roatan Island’s Critically Endangered Coral Snake Micrurus ruatanus: Proteomic Characterization, Toxicity, Immunorecognition and Neutralization by an Antivenom. J Proteomics2019, 198, 177–185, doi:10.1016/J.JPROT.2019.01.007.
  78. Bénard-Valle, M.; Neri-Castro, E.; Elizalde-Morales, N.; Olvera-Rodríguez, A.; Strickland, J.; Acosta, G.; Alagón, A. Protein Composition and Biochemical Characterization of Venom from Sonoran Coralsnakes (Micruroides euryxanthus). Biochimie2021, 182, 206–216, doi:10.1016/J.BIOCHI.2021.01.003.
  79. Olamendi-Portugal, T.; Batista, C.V.F.; Pedraza-Escalona, M.; Restano-Cassulini, R.; Zamudio, F.Z.; Benard-Valle, M.; Rafael de Roodt, A.; Possani, L.D. New Insights into the Proteomic Characterization of the Coral Snake Micrurus pyrrhocryptus Venom. Toxicon2018, 153, 23–31, doi:10.1016/J.TOXICON.2018.08.003.
  80. Sanz, L.; de Freitas-Lima, L.N.; Quesada-Bernat, S.; Graça-de-Souza, V.K.; Soares, A.M.; Calderón, L. de A.; Calvete, J.J.; Caldeira, C.A.S. Comparative Venomics of Brazilian Coralsnakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon2019, 166, 39–45, doi:10.1016/J.TOXICON.2019.05.001.
  81. Hernández-Altamirano, J.A.; Salazar-Valenzuela, D.; Medina-Villamizar, E.J.; Quirola, D.R.; Patel, K.; Vaiyapuri, S.; Lomonte, B.; Almeida, J.R. First Insights into the Venom Composition of Two Ecuadorian Coralsnakes. International Journal of Molecular Sciences 2022, 23, 14686, doi:10.3390/IJMS232314686.


​​

Descargas


bg
Copyright: © 2024 por los autores. Publicación de acceso abierto bajo los términos y condiciones de la licencia Creative Commons Attribution ( CC BY-NC-ND 4.0 )

Compartir




Fichas de especies

¿Cómo reconócerlas?